一文带你精通CAS,由浅入深,直击灵魂,java高级面试题及答案

只要我们当前传入的进行比较的值和内存里的值相等,就将新值修改成功,否则返回 0 告诉比较失败了。学过数据库的同学都知道悲观锁和乐观锁,乐观锁总是认为数据不会被修改。基于这种假设 CAS 的操作也认为内存里的值和当前值是相等的,所以操作总是能成功,我们可以不需要加锁就实现多线程下的原子性操作。

在多线程情况下使用 CAS 同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被阻塞挂起,而是告诉它这次修改失败了,你可以重新尝试,于是可以写这样的代码。

while (!cas(&addr, old, newValue)) {

}

// success

printf(“new value = %ld”, addr);

不过这样的代码相信你可能看出其中的蹊跷了,这个我们后面来分析,下面来看看 Java 里是怎么用 CAS 的。

Java 里的 CAS

===========

还是前面的问题,如果让你用 Java 的 API 来实现你可能会想到两种方式,一种是加锁(可能是 synchronized 或者其他种类的锁),另一种是使用 atomic 类,如 AtomicInteger,这一系列类是在 JDK1.5 的时候出现的,在我们常用的 java.util.concurrent.atomic 包下,我们来看个例子:

ExecutorService executorService = Executors.newCachedThreadPool();

AtomicInteger atomicInteger = new AtomicInteger(0);

for (int i = 0; i < 5000; i++) {

executorService.execute(atomicInteger::incrementAndGet);

}

System.out.println(atomicInteger.get());

executorService.shutdown();

这个例子开启了 5000 个线程去进行累加操作,不管你执行多少次答案都是 5000。这么神奇的操作是如何实现的呢?就是依靠 CAS 这种技术来完成的,我们揭开 AtomicInteger 的老底看看它的代码:

public class AtomicInteger extends Number implements java.io.Serializable {

private static final long serialVersionUID = 6214790243416807050L;

// setup to use Unsafe.compareAndSwapInt for updates

private static final Unsafe unsafe = Unsafe.getUnsafe();

private static final long valueOffset;

static {

try {

valueOffset = unsafe.objectFieldOffset

(AtomicInteger.class.getDeclaredField(“value”));

} catch (Exception ex) { throw new Error(ex); }

}

private volatile int value;

/**

  • Creates a new AtomicInteger with the given initial value.

  • @param initialValue the initial value

*/

public AtomicInteger(int initialValue) {

value = initialValue;

}

/**

  • Gets the current value.

  • @return the current value

*/

public final int get() {

return value;

}

/**

  • Atomically increments by one the current value.

  • @return the updated value

*/

public final int incrementAndGet() {

return unsafe.getAndAddInt(this, valueOffset, 1) + 1;

}

}

这里我只帖出了我们前面例子相关的代码,其他都是类似的,可以看到 incrementAndGet 调用了 unsafe.getAndAddInt 方法。Unsafe 这个类是 JDK 提供的一个比较底层的类,它不让我们程序员直接使用,主要是怕操作不当把机器玩坏了。。。(其实可以通过反射的方式获取到这个类的实例)你会在 JDK 源码的很多地方看到这家伙,我们先说说它有什么能力:

  • 内存管理:包括分配内存、释放内存

  • 操作类、对象、变量:通过获取对象和变量偏移量直接修改数据

  • 挂起与恢复:将线程阻塞或者恢复阻塞状态

  • CAS:调用 CPU 的 CAS 指令进行比较和交换

  • 内存屏障:定义内存屏障,避免指令重排序

这里只是大致提一下常用的操作,具体细节可以在文末的参考链接中查看。下面我们继续看 unsafegetAndAddInt 在做什么。

public final int getAndAddInt(Object var1, long var2, int var4) {

int var5;

do {

var5 = this.getIntVolatile(var1, var2);

} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));

return var5;

}

public native int getIntVolatile(Object var1, long var2);

public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

其实很简单,先通过 getIntVolatile 获取到内存的当前值,然后进行比较,展开 compareAndSwapInt 方法的几个参数:

  • var1: 当前要操作的对象(其实就是 AtomicInteger 实例)

  • var2: 当前要操作的变量偏移量(可以理解为 CAS 中的内存当前值)

  • var4: 期望内存中的值

  • var5: 要修改的新值

所以 this.compareAndSwapInt(var1, var2, var5, var5 + var4) 的意思就是,比较一下 var2 和内存当前值 var5 是否相等,如果相等那我就将内存值 var5 修改为 var5 + var4var4 就是 1,也可以是其他数)。


这里我们还需要解释一下 偏移量 是个啥?你在前面的代码中可能看到这么一段:

// setup to use Unsafe.compareAndSwapInt for updates

private static final Unsafe unsafe = Unsafe.getUnsafe();

private static final long valueOffset;

static {

try {

valueOffset = unsafe.objectFieldOffset

(AtomicInteger.class.getDeclaredField(“value”));

} catch (Exception ex) { throw new Error(ex); }

}

private volatile int value;

可以看出在静态代码块执行的时候将 AtomicInteger 类的 value 这个字段的偏移量获取出来,拿这个 long 数据干嘛呢?在 Unsafe 类里很多地方都需要传入 obj 和偏移量,结合我们说 Unsafe 的诸多能力,其实就是直接通过更底层的方式将对象字段在内存的数据修改掉。

使用上面的方式就可以很好的解决多线程下的原子性和可见性问题。由于代码里使用了 do while 这种循环结构,所以 CPU 不会被挂起,比较失败后重试,就不存在上下文切换了,实现了无锁并发编程。

CAS 存在的问题

=========

自旋的劣势


你留意上面的代码会发现一个问题,while 循环如果在最坏情况下总是失败怎么办?会导致 CPU 在不断处理。像这种 while(!compareAndSwapInt) 的操作我们称之为自旋,CAS 是乐观的,认为大家来并不都是修改数据的,现实可能出现非常多的线程过来都要修改这个数据,此时随着并发量的增加会导致 CAS 操作长时间不成功,CPU 也会有很大的开销。所以我们要清楚,如果是读多写少的情况也就满足乐观,性能是非常好的。

ABA 问题


提到 CAS 不得不说 ABA 问题,它是说假如内存的值原来是 A,被一个线程修改为了 B,此时又有一个线程把它修改为了 A,那么 CAS 肯定是操作成功的。真的这样做的话代码可能就有 bug 了,对于修改数据为 B 的那个线程它应该读取到 B 而不是 A,如果你做过数据库相关的乐观锁机制可能会想到我们在比较的时候使用一个版本号 version 来进行判断就可以搞定。在 JDK 里提供了一个 `AtomicStampedRefe

【一线大厂Java面试题解析+核心总结学习笔记+最新架构讲解视频+实战项目源码讲义】

浏览器打开:qq.cn.hn/FTf 免费领取

rence` 类来解决这个问题,来看一个例子:

int stamp = 10001;

AtomicStampedReference stampedReference = new AtomicStampedReference<>(0, stamp);

stampedReference.compareAndSet(0, 10, stamp, stamp + 1);

System.out.println("value: " + stampedReference.getReference());

Spark是一个快速通用的集群计算框架,它可以处理大规模数据,并且具有高效的内存计算能力。Spark可以用于各种计算任务,包括批处理、流处理、机器学习等。本文将你了解Spark计算框架的基本概念和使用方法。 一、Spark基础概念 1. RDD RDD(Resilient Distributed Datasets)是Spark的基本数据结构,它是一个分布式的、可容错的、不可变的数据集合。RDD可以从Hadoop、本地文件系统等数据源中读取数据,并且可以通过多个转换操作(如map、filter、reduce等)进行处理。RDD也可以被持久化到内存中,以便下次使用。 2. Spark应用程序 Spark应用程序是由一个驱动程序和多个执行程序组成的分布式计算应用程序。驱动程序是应用程序的主要入口点,它通常位于用户的本地计算机上,驱动程序负责将应用程序分发到执行程序上并收集结果。执行程序是运行在集群节点上的计算单元,它们负责执行驱动程序分配给它们的任务。 3. Spark集群管理器 Spark集群管理器负责管理Spark应用程序在集群中的运行。Spark支持多种集群管理器,包括Standalone、YARN、Mesos等。 二、Spark计算框架使用方法 1. 安装Spark 首先需要安装Spark,可以从Spark官网下载并解压缩Spark安装包。 2. 编写Spark应用程序 编写Spark应用程序通常需要使用Java、Scala或Python编程语言。以下是一个简单的Java代码示例,用于统计文本文件中单词的出现次数: ```java import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import java.util.Arrays; import java.util.Map; public class WordCount { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("WordCount").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); JavaRDD<String> lines = sc.textFile("input.txt"); JavaRDD<String> words = lines.flatMap(line -> Arrays.asList(line.split(" ")).iterator()); Map<String, Long> wordCounts = words.countByValue(); for (Map.Entry<String, Long> entry : wordCounts.entrySet()) { System.out.println(entry.getKey() + " : " + entry.getValue()); } sc.stop(); } } ``` 3. 运行Spark应用程序 将编写好的Spark应用程序打包成jar包,并通过以下命令运行: ```bash spark-submit --class WordCount /path/to/wordcount.jar input.txt ``` 其中,--class参数指定应用程序的主类,后面跟上打包好的jar包路径,input.txt是输入文件的路径。 4. 查看运行结果 Spark应用程序运行完毕后,可以查看应用程序的输出结果,例如上述示例中的单词出现次数。 以上就是Spark计算框架的基本概念和使用方法。通过学习Spark,我们可以更好地处理大规模数据,并且提高计算效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值