P2386 放苹果(洛谷、Java)
题目描述
把 m 个同样的苹果放在 n 个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法。(5,1,15,1,1 和 1,1,51,1,5 是同一种方法)
说明/提示
对于所有数据,保证:1 ≤ m , n ≤ 10,0 ≤ t ≤ 20。
思路:放置苹果都有两种方式:
(1)苹果 >= 盘子时,苹果可以在每一个盘子里面都放一个,或者一个盘子不放苹果,其他盘子来分配苹果
(2)苹果 < 盘子时,只能有和苹果数量相同盘子能够装到苹果
具体看代码:
import java.util.Scanner;
public class P2386 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt(); // 行数
for (int i = 0; i < t; i++) {
int m = sc.nextInt(); // 苹果数量
int n = sc.nextInt(); // 盘子数量
System.out.println(count(m, n)); // 循环调用并输出
}
}
public static int count(int m, int n) {
if (m == 0 | m == 1 | n == 1) { // 判断边界
return 1;
} else if (m >= n) {
// 苹果数量大于盘子数量会出现两种情况:
// 1.每一个盘子都增加一个
// 2.有一个盘子不装,其他盘子来装
return count(m - n, n) + count(m, n - 1);
} else if (m < n) { // 苹果数量小于盘子数量时,随机挑选对应苹果数量的盘子来装苹果
return count(m, m);
}
return -1;
}
}
简单刷题,不足之处,请留言指教