书生·浦语 大模型(学习笔记-9)大模型微调的相关概念 & 预训练 与 微调 & 全量微调FFT 与 PEFT的区别

本文详细探讨了大模型微调的概念,区分了指令微调与全量/部分参数微调的区别。介绍了微调的目的,包括提升模型针对性和泛化能力,以及微调的步骤、数据准备和数据质量的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、什么是大模型微调

二、指令微调

三、微调的目的

三、微调的方式

四、微调的步骤

五、微调数据准备

六、微调的数据质量


一、什么是大模型微调

        预训练和微调的区别,这个很关键

二、指令微调

        这个地方主要是微调的角度不同,简单理解:前一个是相当于直接修改大模型的参数,后一个是更加精确的回答问题,让回答的泛化(其他内容的拓展)更少

三、微调的目的

        四个问题对应四个目的

三、微调的方式

        全量微调FFT:一般指全参数的微调(全量微调),指是一类较早诞生的微调方法,全参数微调需要消耗大量的算力,实际使用起来并不方便(其实就是第二部分的大模型微调

        PEFT:特指部分参数的微调方法,这种方法算力功耗比更高,也是目前最为常见的微调方法,比如lora微调、Prefix-Tuning、Prompt Tuning、P-Tuning v2等方法(就是第二部分的指令微调

四、微调的步骤

        主要步骤比较关键

        这里主要是微调的数据(集)相关 

五、微调数据准备

        数据(集)直接决定了模型的最终效果。当然数据是什么样的取决于你的需求,你将收集、整理什么样的数据(集)。

六、微调的数据质量

        数据(集)的质量直接反应在微调的效果上

七、微调结果评价

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值