kruskal算法的实现

判断边是否应该加入到集合中
这是当前的全部集合,此时总集合边的数量为4

此时我们可以看到2-5这条边的值最小,因为2所在的集合与5所在的集合不同,所以可以连接,边数加1

这是又枚举到了6-8这一条边,此时总集合边的数量为5,因为6和8属于同一个集合,加入6-8这条边之后,集合中会构成环,所以将6-8这条边舍弃

#include
#include
#include

using namespace std;

const int N=200010,M=100010;

int p[M];
int n,m;

struct Edge
{
int a,b,w;

 bool operator< (const Edge &W)const
{
    return w < W.w;
}

}edges[N];

int find(int x)
{
if(p[x]!=x) p[x]=find(p[x]);
else return x;
}

int Kruskal()
{
int res=0,cnt=0;//res记录最小生成树的树边权重之和,cnt记录的是全部加入到树的集合中边的数量(可能有多个集合)
for(int i=0;i<m;i++)
{
int a=edges[i].a,b=edges[i].b,w=edges[i].w;
if(find(a)!=find(b))
/*
具体可以参考连通块中点的数量,如果a和b已经在一个集合当中了,说明这两个点已经被一种方式连接起来了,
如果加入a-b这条边,会导致集合中有环的生成,而树中不允许有环生成,所以一个连通块中的点的数量假设
为x,那么里面x个节点应该是被串联起来的,有x-1条边,所以只有当a,b所属的集合不同时,才能将a-b这条
边加入到总集合当中去
*/
{
p[find(a)]=p[find(b)];//将a,b所在的两个集合连接起来
cnt++;//因为加入的是a-b的这一条边,将a,b所在的两个集合连接之后,全部集合中的边数加1
res+=w;//加入到集合中的边的权重之和
}
}

if(cnt==n-1) return res;//可以生成最小生成树
else return 0x3f3f3f3f;//树中有n个节点便有n-1条边,如果cnt不等于n-1的话,说明无法生成有n个节点的树

}

int main()
{
cin>>n>>m;

for(int i=0;i<n;i++) p[i]=i;//初始化并查集

for(int i=0;i<m;i++)
{
    int a,b,w;
    scanf("%d%d%d",&a,&b,&w);
    edges[i]={a,b,w};
}

sort(edges,edges+m);//将边的权重按照大小一一排序

int t=Kruskal();

if(t==0x3f3f3f3f) printf("impossible\n");
else printf("%d\n",t);

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值