Adaboost算法
Adaboost是一种集成学习算法,其基本思想是将多个弱分类器(通常是决策树、神经网络等)组合成一个强分类器。其中“弱分类器”指的是分类准确率稍低于50%的分类器,而“强分类器”指的是分类准确率较高的分类器。
在 Adaboost算法中,每个弱分类器都被赋予一个权值,根据其分类准确率的高低来调整权值。每一次训练时,Adaboost都会根据上一次分类的错误率重新调整数据的权值,**使得那些被错误分类的数据点的权值更高,而那些被正确分类的数据点的权值较低。**因此,在接下来的分类任务中,弱分类器将更加关注那些被错误分类的数据点,以提高分类准确率。
具体而言,Adaboost算法中每个弱分类器都会被训练多次。在每一轮训练中,它会尝试通过调整阈值或选择新的特征来降低分类错误率。当所有弱分类器都已训练完毕后,它们会被组合成一个强分类器,其分类准确率通常比单个弱分类器要高。
在实际应用中,Adaboost算法被广泛用于人脸识别、图像识别等领域。
手写例题
动手算一下才能发现问题,推荐>>科学计算器
第一次迭代
第二次迭代
第三次迭代