【机器学习/集成学习】Adaboost算法-手写例题

Adaboost算法

Adaboost是一种集成学习算法,其基本思想是将多个弱分类器(通常是决策树、神经网络等)组合成一个强分类器。其中“弱分类器”指的是分类准确率稍低于50%的分类器,而“强分类器”指的是分类准确率较高的分类器。

在 Adaboost算法中,每个弱分类器都被赋予一个权值,根据其分类准确率的高低来调整权值。每一次训练时,Adaboost都会根据上一次分类的错误率重新调整数据的权值,**使得那些被错误分类的数据点的权值更高,而那些被正确分类的数据点的权值较低。**因此,在接下来的分类任务中,弱分类器将更加关注那些被错误分类的数据点,以提高分类准确率。

具体而言,Adaboost算法中每个弱分类器都会被训练多次。在每一轮训练中,它会尝试通过调整阈值或选择新的特征来降低分类错误率。当所有弱分类器都已训练完毕后,它们会被组合成一个强分类器,其分类准确率通常比单个弱分类器要高。

在实际应用中,Adaboost算法被广泛用于人脸识别、图像识别等领域。

手写例题

动手算一下才能发现问题,推荐>>科学计算器

第一次迭代

在这里插入图片描述
在这里插入图片描述

第二次迭代

在这里插入图片描述

第三次迭代

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值