【数据结构】八大排序算法

本文详细介绍了十种常见的排序算法,包括直接插入排序、希尔排序、选择排序(包括快速选择排序)、堆排序、冒泡排序、快速排序(递归和非递归版本以及优化)、归并排序和计数排序。每种算法都提供了思路、代码实现和时间复杂度分析,还提到了一些优化策略,如三数取中和小区间优化。
摘要由CSDN通过智能技术生成

目录

一、直接插入排序

二、希尔排序

三、选择排序

 3.1、简单选择排序

 3.2、快速选择排序(Top K问题)

四、堆排序

五、冒泡排序

六、快速排序

  1、递归版本

     1.1 hoare 法

     1.2 挖坑法

     1.3 前后指针法

  2、非递归版本

  3、快速排序的优化

     3.1 三数取中

     3.2 小区间优化

七、归并排序

  1、递归版本

  2、非递归版本

八、计数排序

九、排序的比较:


一、直接插入排序

动图演示:

思路:(1)首先先按一趟插入排序编写, 数组的最后一个元素为 end,将要插入数据就是临时数据tmp = a[end+1],如果 tmp 小于 end 位置的数据,就将 end 位置的数据往后挪到 end+1的位置,直到插入到里面;(2)再按整体插入排序,进行插入,假设第一次数组里面就一个数据,所以 end 位置就是0,然后结束条件就是小于 n-1,否则就越界。

注意:先保存一下 end+1 位置的数据,否则在挪动的时候,就会被覆盖。

 

上面给出了两个动图演示,能更好的理解。

//插入排序    时间复杂度:O(N^2)
void InsertSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		int end = i;
		int tmp = a[end + 1];
		while (end >= 0)
		{
			if (tmp < a[end])
			{
				a[end + 1] = a[end];
				end--;
			}
			else
			{
				break;
			}
		}
		a[end + 1] = tmp;
	}
}

二、希尔排序

希尔排序可以缩小增量排序,又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成 几个 组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工 作。当到达 gap=1时,所有记录在统一组内排好序。 

希尔排序的特性总结:

  1. 希尔排序是对直接插入排序的优化。
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就 会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好多树中给出的希尔排序的时间复杂度都不固定。
//希尔排序      时间复杂度:O(N^1.3)
void ShellSort(int* a, int n)
{
	//gap > 1 预排序
	//gap越大,大的数可以更快的到后面,小的数可以更快的到前面。越不接近有序。
	//gap越小,数据跳动越慢,越接近有序。
	//gap == 1 直接插入排序
	int gap = n;
	while (gap > 1)
	{
		gap = gap / 2;
		//gap = gap / 3 + 1;
		for (int j = 0; j < gap; j++)//分gap组排序
		{
			for (int i = j; i < n - gap; i += gap)//每一个组进行插入排序
			{
				int end = i;
				int tmp = a[end + gap];
				while (end >= 0)
				{
					if (tmp < a[end])
					{
						a[end + gap] = a[end];
						end -= gap;
					}
					else
					{
						break;
					}
				}
				a[end + gap] = tmp;
			}
		}
	}
}

三、选择排序

 3.1、简单选择排序

动图演示:

思路:设两个变量mini,maxi分别存最小数据位置的下标和最大位置数据的下标,每次遍历数组标记出最大数据的下标和最小位置数据的下标,分别将其与最后一个数据和开头数据进行交换。

//选择排序     时间复杂度:O(N^2)
//和直接插入排序相比,插入排序更好
//插入适应性很强,对于有序,局部有序,都能效率提升
void SelectSort(int* a, int n)
{
	int begin = 0, end = n - 1;
	while (begin < end)
	{
		int mini = begin, maxi = begin;
		for (int i = begin + 1; i <= end; i++)
		{
			if (a[i] < a[mini])
			{
				mini = i;
			}
			if (a[i] > a[maxi])
			{
				maxi = i;
			}
		}
        //此时,已经选出了最大的,和最小的
		//位置交换
		Swap(&a[begin], &a[mini]);
		//begin跟maxi重叠了,第一步交换之后maxi位置变了
		if (maxi == begin)
		{
			maxi = mini;
		}
		Swap(&a[end], &a[maxi]);
		begin++;
		end--;
	}

注意:这种情况是特殊情况,最大值的位置(maxi)在 begin 处,交换完 a[begin] 和 a[mini] 时,此时 ,maxi 位置被交换到 mini 的位置了,所以 maxi 的位置发生了变化,需要我们处理一下 maxi 的位置。

 3.2、快速选择排序(Top K问题)

快速选择排序和快速排序算法有很大的相似之处,将问题的规模一次次的减小,直到求出最终解,时间复杂度为:O(N),且快速选择排序算法不要求数据有序。

目的:找到第K大的数

  1. 出口条件为left == right,并返回值;
  2. 对 left 到 right 区间进行快排操作,注意分界条件,与快排相同;
  3. 在递归调用时,我们不需要对左右两边都进行调用,只需要判断我们选择的数 k 在左边还是在右边,然后只调用 k 所在的区间即可。
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 100;
int x[N];
int n, k;

int QuickSelect(int a[], int left, int right, int k) 
{
    if (left >= right)
    { 
        return a[k]; 
    }
    int mid = a[(left + right) / 2], i = left - 1, j = right + 1;
    while (i < j) 
    {
        while (a[++i] < mid);
        while (a[--j] > mid);
        if (i < j) 
            swap(a[i], a[j]);
    }
    if (j >= k) 
    { 
        return QuickSelect(a, left, j, k);
    }
    else 
    { 
        return QuickSelect(a, j + 1, right, k);
    }
}
int main() 
{
    cin >> n >> k;
    for (int i = 0; i < n; i++) 
        cin >> x[i];
    cout << QuickSelect(x, 0, 9, k - 1) << endl;
}

四、堆排序

堆排序是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆本文建的是大堆,排升序。

//堆排序     时间复杂度:O(N*logN)
//交换
void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
//向下调整
void AdjustDown(int* a, int n, int parent)//n为数组的大小
{
	int child = parent * 2 + 1;//左孩子
	while (child < n)
	{
		//确认child指向大的那个孩子
		if (child + 1 < n && a[child + 1] > a[child])//child+1 < n 右孩子存在的情况
		{
			++child;//默认指向左孩子,++child就指向右孩子
		}
		//孩子大于父亲,交换,继续向下调整
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;//孩子小于父亲,跳出循环
		}
	}
}
void HeapSort(int* a, int n)
{
	//向下调整建堆--- O(N) --- 好一点
	//升序:建大堆
	for (int i = (n - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(a, n, i);
	}
	//O(N*logN)
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

五、冒泡排序

动图演示:

思路:前后数据进行对比,若前面数据大于后面的数据就交换,这样经过第一轮的排序,最大值就被换到了最后的位置,然后再进行第二轮排序,这样以此往复,第二大的数据被放到倒数第二的位置,直到所有数据排序完毕。

//冒泡排序    时间复杂度:O(N^2)
void BubbleSort(int* a, int n)
{
	for (int j = 0; j < n; j++)
	{
		int exchange = 0;
		for (int i = 1; i < n - j; i++)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		//一趟冒泡过程中,没有发生交换,说明已经有序了,不需要进行处理
		if (exchange == 0)
		{
			break;
		}
	}
}

六、快速排序

基本思想为:任取待排序元素序列中 的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右 子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

快速排序的阶段性结果特点:第 i 趟完成时,会有 i 个以上的数据出现在它最终要出现的位置。

  1、递归版本

     1.1 hoare 法

 动图演示:

思路:(1)选取key位置,通常选在最开始的left位置(或最后面right位置)。

            (2)如果key选在left位置,则 right 先走,找到比 key 位置小的数据停下。

            (3)left 再走,找到比 key 位置大的数据停下。

            (4)交换 left 和 right 位置的数据,一直重复以上操作,直到left 和 right 相遇结束。

            (5)相遇结束后,此时交换 key 位置和 left 位置(就是相遇的位置)的数据, 这个时候相遇位置的左边的数据小于等于相遇位置的数据,右边的数据大于等于相遇位置的数据。所以,这个数据就调整到了它的正确位置。

//Hoare
int PartSort1(int* a, int begin, int end)
{
	int left = begin, right = end;
	int key = left;
	while (left < right)
	{
		//右边先走,找小
		while (left < right && a[right] >= a[key])//left < right条件是防止越界
		{
			right--;
		}
		//左边再走,找大
		while (left < right && a[left] <= a[key])
		{
			left++;
		}
		Swap(&a[left], &a[right]);
	}
	Swap(&a[left], &a[key]);
	key = left;
	return key;
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	if ((end - begin + 1) < 15)
	{
		//优化方法:小区间用直接插入替代,减少递归调用次数
		InsertSort(a + begin, end - begin + 1);
	}
	else
	{
		int key = PartSort1(a, begin, end);

		//[begin,key-1] key [key+1 , end] 三段位置
		QuickSort(a, begin, key - 1);
		QuickSort(a, key + 1, end);
	}
}

     1.2 挖坑法

 动图演示:

思路:(1)把数组 left 位置的数据赋值给 key ,形成了第一个坑位 hole 就是 left 位置,要保存 key 位置的值。

           (2)right 先走,找到比 key 位置数据小的值,就停下,将此处的数据放到坑位 hole 中,此时right 位置就形成了新的坑位。

           (3)然后 left 再走,找到比 key 位置数据大的值,就停下,将此处的数据放到坑位 hole 中,此时,left 位置就形成新的坑位。

           (4)当 left 和 right 相遇时,将 key 位置的数据放入到坑位中,此时,key 数据就放到了正确的位置。

//挖坑法
int PartSort2(int* a, int begin, int end)
{
	int left = begin, right = end;
	int key = left;
	int hole = left;
	while (left < right)
	{
		//右边找小,填到左边的坑里面
		if (left < right && a[right] >= a[key])
		{
			right--;
		}
		a[hole] = a[right];
		hole = right;
		//左边找大,填到右边的坑里面
		if (left < right && a[left] <= a[key])
		{
			left++;
		}
		a[hole] = a[left];
		hole = left;
	}
	a[hole] = a[key];
	return hole;
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}

	if ((end - begin + 1) < 15)
	{
		//优化方法:小区间用直接插入替代,减少递归调用次数
		InsertSort(a + begin, end - begin + 1);
	}
	else
	{
		int key = PartSort2(a, begin, end);

		//[begin,key-1] key [key+1 , end] 三段位置
		QuickSort(a, begin, key - 1);
		QuickSort(a, key + 1, end);
	}
}

     1.3 前后指针法

 动图演示:

思路:(1)首先假设 key 是数组最开始位置,然后用前后指针法,prev 指向第一个元素,cur 指向第二个元素。

           (2)cur 先移动,找到比 key 位置数据小的停下。

           (3)++prev,交换 prev 与 cur 位置的数据。

           (4)当 cur 指向数组最后一个位置的下一个位置时,循环停止。

           (5)交换 key 下标与 prev 下标的数据。

//前后指针法
int PartSort3(int* a, int begin, int end)
{
	int prev = begin;
	int cur = begin + 1;
	int key = begin;
	while (cur <= end)
	{
		//找到比key小的值时,跟++prev位置交换,小的往前翻,大的往后翻
		while (a[cur] < a[key] && ++prev != cur)
        {
            //满足条件,进行交换
            Swap(&a[prev], &a[cur]);
        }
		cur++;
	}
	Swap(&a[key], &a[prev]);
	key = prev;
	return key;
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	if ((end - begin + 1) < 15)
	{
		//优化方法:小区间用直接插入替代,减少递归调用次数
		InsertSort(a + begin, end - begin + 1);
	}
	else
	{
		int key = PartSort3(a, begin, end);

		//[begin,key-1] key [key+1 , end] 三段位置
		QuickSort(a, begin, key - 1);
		QuickSort(a, key + 1, end);
	}
}

  2、非递归版本

思路:通过非递归的方式实现的话,我们要借助栈的内存结构让先入的后出,所以要先进 begin 再进 end,出的顺序就是先出右再出左再先排右边再排左边。

//非递归版本
void QuickSortNonR(int* a, int begin, int end)
{
	//借助栈实现非递归
	ST st;
	StackInit(&st);
	StackPush(&st, begin);
	StackPush(&st, end);
	while (!StackEmpty(&st))
	{
		int right = StackTop(&st);
		StackPop(&st);
		int left = StackTop(&st);
		StackPop(&st);

		int key = PartSort1(a, left, right);
		//[left,key-1] key [key+1,right]
		if (key + 1 < right)
		{
			StackPush(&st, key + 1);
			StackPush(&st, right);
		}
		if (left < key - 1)
		{
			StackPush(&st, left);
			StackPush(&st, key - 1);
		}
	}
	StackDestory(&st);
}

  3、快速排序的优化

     3.1 三数取中

三数取中是一种优化算法,为了防止 key 位置的数据是该数组中的最小值,进行一趟快速排序后,没有什么变化,我们采用的三数取中的方法,在一个数组中选取一个中间值作为 key ,来进行快速排序,这样的效率会大大的提升。

int GetMidIndex(int* a, int begin, int end)
{
	int mid = (begin + end) / 2;
	if (a[begin] < a[mid])
	{
		if (a[mid] < a[end])
		{
			return mid;
		}
		else if (a[begin] > a[end])
		{
			return begin;
		}
		else
		{
			return end;
		}
	}
	else  //a[begin] > a[mid]
	{
		if (a[mid] > a[end])
		{
			return mid;
		}
		else if (a[begin] > a[end])
		{
			return end;
		}
		else
		{
			return begin;
		}
	}
}

     3.2 小区间优化

快排的思想就是不断地分割小序列,然后再递归实现,它的每一层的递归次数以2倍的次数进行增长。当元素较多时以递归的方法实现是不错的,但是当序列元素较少时,再使用递归就没有必要了,我们可以选择使用其他的排序方法来实现小序列的排序。

void QuickSort1(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	if ((end - begin + 1) < 10)
	{
		InsertSort(a, (end - begin + 1));
	}
	int mid = GetMidIndex(a, begin, end);
	swep(&a[begin], &a[mid]);
	int keyi = PartSort3(a, begin, end);
	QuickSort1(a, begin, keyi - 1);
	QuickSort1(a, keyi+1, end);
}

七、归并排序

  1、递归版本

 动图演示:

归并的思想:

        归并排序是建立在 归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。
        将已有序的子序列合并,得到完全有序的序列;
        即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

//归并排序    时间复杂度:O(N*logN)   空间复杂度:O(N)
void _MergeSort(int* a, int begin, int end, int* tmp)
{
	if (begin >= end)
	{
		return;
	}
	int mid = (begin + end) / 2;
	//[begin,mid]  [mid+1,end]  递归让子区间有序
	_MergeSort(a, begin, mid, tmp);
	_MergeSort(a, mid + 1, end, tmp);

	//归并
	int begin1 = begin, end1 = mid;
	int begin2 = mid + 1, end2 = end;
	int i = begin;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] <= a[begin2])
		{
			tmp[i++] = a[begin1++];
		}
		else
		{
			tmp[i++] = a[begin2++];
		}
	}
	while (begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}
	memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}
void MergeSort(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
	_MergeSort(a, 0, n - 1, tmp);

	free(tmp);
	tmp = NULL;
}

  2、非递归版本

 我们就控制每个区间就可以归并了,因为归并是二分。

rangeN 表示:每组归并的数据个数。

//非递归归并排序
void MergeSortNonR(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
	//归并每组数据个数,从1开始,因为1个认为是有序的,可以直接归并
	int rangeN = 1;
	while (rangeN < n)
	{
		for (int i = 0; i < n; i += rangeN * 2)
		{
			//[begin1,end1] [begin2,end2]  归并
			int begin1 = i, end1 = i + rangeN - 1;
			int begin2 = i + rangeN, end2 = i + 2 * rangeN - 1;
			int j = i;
			//end1  begin2 end2越界
			if (end1 >= n)
			{
				break;
			}
			else if (begin2 >= n)//begin2 end2 越界
			{
				break;
			}
			else if (end2 >= n)//end2 越界
			{
				//修正区间
				end2 = n - 1;
			}
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] <= a[begin2])
				{
					tmp[j++] = a[begin1++];
				}
				else
				{
					tmp[j++] = a[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				tmp[j++] = a[begin1++];
			}
			while (begin2 <= end2)
			{
				tmp[j++] = a[begin2++];
			}
			//归并一部分,拷贝一部分
			memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));
		}
		rangeN *= 2;
	}
	free(tmp);
	tmp = NULL;
}

注意:写代码时,需要严密的控制区间,要不然会发生溢出,导致程序崩溃。

有以下三种情况:(1)end1越界,begin2越界,end2越界;(2)begin2越界,end2越界;(3)end2越界

八、计数排序

计数排序的核心思想:其实就是映射,将待排序的数据通过映射,放到辅助空间相对应的位置,然后通过统计出现的次数,最后再放回原先的数组。

//计数排序
void CountSort(int* a, int n)
{
	assert(a);
	int min = a[0];
	int max = a[0];
	for (int i = 1; i < n; ++i)
	{
		//求最大值和最小值
		if (a[i] < min)
			min = a[i];
		if (a[i] > max)
			max = a[i];
	}
	int range = max - min + 1;
	int* countArr = (int*)malloc(sizeof(int) * range);
	memset(countArr, 0, sizeof(int) * range);
	//统计次数
	for (int i = 0; i < n; ++i)
	{
		countArr[a[i] - min]++;
	}
	//排序
	int index = 0;
	for (int j = 0; j < range; ++j)
	{
		while (countArr[j]--)
		{
			//相对位置
			a[index++] = j + min;
		}
	}
	free(countArr);
}

九、排序的比较:

排序方法时间复杂度空间复杂度稳定性
冒泡排序O(n^{2})O(1)稳定
选择排序O(n^{2})O(1)不稳定
插入排序O(n^{2})O(1)稳定
希尔排序O(n^{1.3})O(1)不稳定
堆排序O(N*logN)O(1)不稳定
归并排序O(N*logN)O(N)稳定
快速排序O(N*logN)O(logN)不稳定
计数排序O(N)O(Max-Min+1)不稳定


本文要是有不足的地方,欢迎大家在下面评论,我会在第一时间更正。

 老铁们,记着点赞加关注!!!  

评论 44
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

x一季花开成海x

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值