CCF CSP认证 历年题目自练Day26

文章介绍了两道编程题目,涉及安全指数的计算和最佳阈值的选择。第一题要求根据测评依据的重要度和分数计算总分,若大于0则输出分数,否则输出0。第二题则需要根据给定的yi和resulti,确定最佳阈值以预测正确结果,最后输出具有最多正确预测的阈值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目一

试题编号: 202012-1
试题名称: 期末预测之安全指数
时间限制: 1.0s
内存限制: 512.0MB
请添加图片描述
请添加图片描述

题目分析(个人理解)

  1. 还是先看输出,此题简单的离谱,第一行输入小菜有几个测评依据,然后后面的n行输入每项测评依据的重要度,和分数。
  2. 再看输出,那个 RELU函书其实就是输出:如果总分大于0就输出分数,如果小于或等于0就输出0即可。
  3. 代码如下!!!
n=int(input())
num=0
for i in range(n):
    w,score=map(int,(input().split()))
    num+=w*score
if num>0:
    print(num)
else:
    print(0)

题目二

试题编号: 202012-2
试题名称: 期末预测之最佳阈值
时间限制: 1.0s
内存限制: 512.0MB
请添加图片描述
请添加图片描述

题目分析(个人理解)

  1. 先看输入第一行是输入有n需要判断预测是否正确的数,之后的n行输入对应的yi和result i 。
  2. 我依旧选择列表存储,字典的keys必须为一,将yi 或result i作为keys都不 满足条件。for i in range(m):
    y_result.append(list(map(int,input().split())))
  3. 然后先按照reslut降序排列,再按照yi升序排列,之后到核心代码去判断每一个y作为阈值之后,预测正确的有几项,预测正确的情况有两种,第一种是大于等于yi的reslut值为1。第二种是小于yi的result值为0。这两种分别判断然后计数再相加存在列表中,列表中每个值表示当前位序对应的yi作为阈值时预测正确的个数。将该列表倒序输出,保证出现相同的正确次数时输出较大的y。
  4. 具体如何判断?
# 构建存储predict正确数量的列表
count_Ture = []

# 正序遍历计算所有元素位置前 0 的个数(预测正确)
count = 0
for i in range(m):
    count_Ture.append(count)
    if y_result[i][1] == 0:
        count += 1

# 倒序遍历计算所有元素位置后 1 的个数(预测正确)
count = 0
for i in range(m-1,-1,-1):
    if y_result[i][1] == 1:
        count += 1
    count_Ture[i] += count
  1. 就是排序之后,第一个循环是将当前遍历到的安全指数设为阈值,因为阈值等于自身时,预测结果为1,所以需要先将预测正确结果保存下来再做判断使count+1。count之所以在result为0时自加1,是因为通过以安全指数(yi)排序之后,之后的安全指数都是大于之前的,所以之后的安全指数(作阈值时)在检测排序在其之前的且result为0的数据时一定检测成功,所以使count+1。倒序遍历则原理相同只是计算时,因为当前安全指数检测自身这组数据时一定相等,所以当result为1时先做count+1的操作再进行保存。(倒序遍历时是小于本次遍历到的安全指数作为阈值时,本次遍历的这组数据若result为1,则必检测过)
  2. 上完整代码!!!
# 输入安全指数数量
m = int(input())

# 初始化 y,result 存储列表
y_result = []

# 循环输入 y,result
for i in range(m):
    y_result.append(list(map(int,input().split())))

# 先按照result排序再按照y排序 避免使用同一y的最大predict
y_result.sort(key=lambda x:x[1],reverse=True)
y_result.sort(key=lambda x:x[0])

# 构建存储predict正确数量的列表
count_Ture = []

# 正序遍历计算所有元素位置前 0 的个数(预测正确)
count = 0
for i in range(m):
    count_Ture.append(count)
    if y_result[i][1] == 0:
        count += 1

# 倒序遍历计算所有元素位置后 1 的个数(预测正确)
count = 0
for i in range(m-1,-1,-1):
    if y_result[i][1] == 1:
        count += 1
    count_Ture[i] += count

# 存储predict正确数量列表倒序操作(保证相同predict时输出y较大的) 并计算最大正确数量的下标索引
count_Ture.reverse()
index = m - 1 - count_Ture.index(max(count_Ture))

# 输出最佳阈值
print(y_result[index][0])

总结

跑步跑步跑步!何惧风雨?跑完我发截图到评论区。
请添加图片描述
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尚.西西弗斯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值