1.邻接矩阵
(1)基本思想
用一个一维数组存储图中顶点的信息(可以是int,char,自定义的结构体,用来储存图顶点的信息);用一个二维数组(称为邻接矩阵)存储图中各顶点之间的邻接关系
(2)邻接矩阵的构建
1.无向图
在邻接矩阵中,若两个顶点之间连通,则赋值1,否则赋值0;根据无向图的性质,则无向图的邻接矩阵一定主对角线为0且一定是对称矩阵,如下图(图片来自懒猫老师《数据结构》相关课程)
顶点的度:该顶点行或列的值和
两顶点间连接:arc[i][j]是否为1值
顶点的邻接点:遍历行,寻找arc[i][j]==1的点
2.有向图
不同于无向图,在有向图中对于一个顶点来说,例如a-->b,这时才将a行中b的下标赋值为1
顶点的出度:该顶点行的值和
顶点的入度:该顶点列的值和
两顶点间连接:arc[i][j]是否为1值
顶点的邻接点:遍历行,寻找arc[i][j]==1的点
3.网图
网图在有向图的基础上,将原本赋值为1的结点赋值为该边的权值,并且矩阵对角线赋值为0,其他值赋为无穷
(3)代码实现
这里以无向图为例,其他图可对应上面进行修改;分为两个包,邻接矩阵.h包和测试.c包,合并即为完整代码
1.图_邻接矩阵.h
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MAX_VERTEX 10//最大的顶点个数
typedef int DataType;
//以下是无向图的定义
void MGraph(DataType *vertex, int arc[][MAX_VERTEX], int vertexNum, int arcNum) { //初始化构造图(邻接矩阵法)
printf("请逐个输入顶点的内容:");
DataType x;
DataType vi, vj; //构建邻接矩阵时,一条边的两个结点编号
for (int i = 0; i < vertexNum; i++) { //顶点数组赋值
scanf("%d", &x);
vertex[i] = x;
}
for (int i = 0; i < vertexNum; i++) //初始化邻接矩阵
for (int j = 0; j < vertexNum; j++)
arc[i][j] = 0;
int count = 1;
for (int i = 0; i < arcNum; i++) { //依次输入每一条边
printf("请输入第%d条边依附的两个顶点的编号:", count++);
scanf("%d %d", &vi, &vj); //输入该边依附的顶点的编号
arc[vi][vj] = 1; //置有边标志
arc[vj][vi] = 1;
}
}
void printMGraph(DataType *vertex, int arc[][MAX_VERTEX], int vertexNum) { //输出
printf("vertex:");
for (int i = 0; i < vertexNum; i++) {
printf("%d ", vertex[i]);
}
printf("\n");
printf("arc:\n");
for (int i = 0; i < vertexNum; i++) {
for (int j = 0; j < vertexNum; j++) {
if (j == vertexNum - 1)
printf("%d\n", arc[i][j]);
else
printf("%d ", arc[i][j]);
}
}
}
int isLinked(int arc[][MAX_VERTEX], int i, int j) { //两顶点i,j是否有边相连,1是相连,0是不相连
if (arc[i][j] == 1)
return 1;
else
return 0;
}
int nodeDepth(int arc[][MAX_VERTEX], int index, int vertexNum) { //任意一顶点的度
//无向图任意遍历行\列求和
int count = 0;
for (int i = 0; i < vertexNum; i++) {
if (arc[index][i] == 1)
count++;
}
return count;
}
2. 图的测试_邻接矩阵.c
#include "图_邻接矩阵.h"
main() {
DataType vertex[MAX_VERTEX];//储存所有的顶点
int arc[MAX_VERTEX][MAX_VERTEX];//邻接矩阵,结点间的连通关系
int vertexNum, arcNum; //结点个数,边的个数
printf("输入顶点个数:");
scanf("%d", &vertexNum);
printf("输入边个数:");
scanf("%d", &arcNum);
MGraph(vertex, arc, vertexNum, arcNum);
printMGraph(vertex, arc, vertexNum);
printf("测试判断两顶点是否相连,请输入两个顶点下标:");
int i, j;
scanf("%d %d", &i, &j);
if (isLinked(arc, i, j) == 1)
printf("相连!\n");
else
printf("不相连!\n");
printf("测试求顶点的度,请输入一个顶点下标:");
int index;
scanf("%d", &index);
printf("该顶点的度为:%d", nodeDepth(arc, index, vertexNum));
}
(4)输出测试
测试用例:
输出:
2.邻接表
(1)基本思想
建立一个一维数组,一维数组中的元素结构定义为两部分,一部分储存顶点的的信息,一部分储存链表的头指针。而每一个链表的头指针都指向一个链表,链表里储存的是该顶点所连接的点信息。
一维数组称为顶点表,每一个数组元素指向的链表称为边表
(2)邻接表的构建
1.数据结构
typedef struct ArcNode { /*边表结点*/
int adjvex;//边表数据域,即下标
struct ArcNode *next; //指针域
} ArcNode;
typedef struct VertexNode { /*顶点表结点*/
DataType vertex;//顶点的数据
ArcNode *firstEdge; //指向储存该顶点所连接所有结点的边表
} VertexNode;
这里的边表链表的构建使用的是头插法 ,详见最下面的完整代码
2.无向图
顶点的度:遍历顶点表找到顶点,遍历顶点的链表,求结点个数
两顶点间连接:遍历顶点表找到顶点,遍历顶点的链表,求是否存在另一个结点
3.有向图
顶点的出度:遍历顶点表找到顶点,遍历顶点的链表,求结点个数
顶点的入度:遍历顶点表中其他每个顶点,并遍历其他每个顶点的链表,求该顶点出现的次数
邻接点:遍历顶点表找到顶点,遍历顶点的链表,即为邻接点
4.网图
在有向图基础上添加了权值的存储
(3)代码实现
这里以有向图为例,其他图可对应上面进行修改;分为两个包,邻接表.h包和测试.c包,合并即为完整代码
1.图_邻接表.h
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MAX_VERTEX 10//最大的顶点个数
typedef int DataType;
typedef struct ArcNode { /*边表结点*/
int adjvex;//边表数据域,即下标
struct ArcNode *next; //指针域
} ArcNode;
typedef struct VertexNode { /*顶点表结点*/
DataType vertex;//顶点的数据
ArcNode *firstEdge; //指向储存该顶点所连接所有结点的边表
} VertexNode;
void initVertex(DataType *, int);
//以下是有向图的定义
void ALGraph(DataType *vertex, VertexNode *adjList, int vertexNum, int arcNum) { //初始化构造图(邻接表法)
DataType vi, vj;
int count = 0;
initVertex(vertex, vertexNum);
for (int i = 0; i < vertexNum; i++) { //初始化顶点表
adjList[i].vertex = vertex[i];
adjList[i].firstEdge = NULL;
}
for (int i = 0; i < arcNum; i++) {
//输入边的信息储存在边表中
printf("请输入第%d条边依附的两个顶点的编号(方向->):", count++);
scanf("%d %d", &vi, &vj); //输入该边依附的顶点的编号
ArcNode *s;
s = (ArcNode *)malloc(sizeof(ArcNode));
if (s != NULL) {
s->adjvex = vj;
s->next = adjList[vi].firstEdge; //头插法建立链表
adjList[vi].firstEdge = s;
} else
printf("init error!\n");
}
}
void initVertex(DataType *vertex, int vertexNum) {//输入函数
printf("请逐个输入顶点的内容:");
DataType x;
for (int i = 0; i < vertexNum; i++) { //顶点数组赋值
scanf("%d", &x);
vertex[i] = x;
}
}
void printALGraph(VertexNode *adjList, int vertexNum) {
printf("vertex firstEdge\n");
ArcNode *p ;
for (int i = 0; i < vertexNum; i++) {
printf("%3d -->", adjList[i].vertex);
p = adjList[i].firstEdge;
while (p != NULL) {
printf("%d -->", p->adjvex);
p = p->next;
}
printf("NULL\n");
printf("\n");
}
}
int isLinked(VertexNode *adjList, int i, int j) { //两顶点i,j是否有边相连,1是相连,0是不相连
ArcNode *p = adjList[i].firstEdge ;
while (p != NULL) {
if (p->adjvex == j)
return 1;
else
p = p->next;
}
p = adjList[j].firstEdge;
while (p != NULL) {
if (p->adjvex == i)
return 1;
else
p = p->next;
}
return 0;
}
int nodeDepth(VertexNode *adjList, int index, int vertexNum) { //任意一顶点的度
int count = 0;
ArcNode *p = adjList[index].firstEdge;
while (p != NULL) {
count++;
p = p->next;
}
return count;
}
void freeArcNode(VertexNode *adjList, int vertexNum) {
ArcNode *p;
ArcNode *temp;
for (int i = 0; i < vertexNum; i++) {
p = adjList[i].firstEdge ;
while (p != NULL) {
temp = p;
p = p->next;
free(temp);
}
}
}
2. 图的测试_邻接表.c
#include "图_邻接表.h"
int main() {
DataType vertex[MAX_VERTEX];//储存所有的顶点
int vertexNum, arcNum; //结点个数,边的个数
printf("输入顶点个数:");
scanf("%d", &vertexNum);
printf("输入边个数:");
scanf("%d", &arcNum);
VertexNode adjList[vertexNum];//顶点表
ALGraph(vertex, adjList, vertexNum, arcNum);
printALGraph(adjList, vertexNum);
printf("测试判断两顶点是否相连,请输入两个顶点下标:");
int i, j;
scanf("%d %d", &i, &j);
if (isLinked(adjList, i, j) == 1)
printf("相连!\n");
else
printf("不相连!\n");
printf("测试求顶点的度,请输入一个顶点下标:");
int index;
scanf("%d", &index);
printf("该顶点的度为:%d", nodeDepth(adjList, index, vertexNum));
freeArcNode(adjList, vertexNum);
}
(4)测试输出
测试用例:
输出:
3.十字链表
在结构体定义里添加了一个指针域,指向了<--方向的点
初学小白,有错误欢迎指正喔!!