一、LightGBM的介绍
1.1 简介
LightGBM是2017年由微软推出的可扩展机器学习系统,是微软旗下DMKT的一个开源项目,由2014年首届阿里巴巴大数据竞赛获胜者之一柯国霖老师带领开发。它是一款基于GBDT(梯度提升决策树)算法的分布式梯度提升框架,为了满足缩短模型计算时间的需求,LightGBM的设计思路主要集中在减小数据对内存与计算性能的使用,以及减少多机器并行计算时的通讯代价。
LightGBM可以看作是XGBoost的升级豪华版,在获得与XGBoost近似精度的同时,又提供了更快的训练速度与更少的内存消耗。正如其名字中的Light所蕴含的那样,LightGBM在大规模数据集上跑起来更加优雅轻盈,一经推出便成为各种数据竞赛中刷榜夺冠的神兵利器。
1.2 LightGBM优缺点
主要优点:
1.简单易用。提供了主流的Python\C++\R语言接口,用户可以轻松使用LightGBM建模并获得相 当不错的效果。
2.高效可扩展。在处理大规模数据集时高效迅速、高准确度,对内存等硬件资源要求不高。
3.鲁棒性强。相较于深度学习模型不需要精细调参便能取得近似的效果。
4.LightGBM直接支持缺失值与类别特征,无需对数据额外进行特殊处理
主要缺点:
- 相对于深度学习模型无法对时空位置建模,不能很好地捕获图像、语音、文本等高维数据。
- 在拥有海量训练数据,并能找到合适的深度学习模型时,深度学习的精度可以遥遥领先LightGBM。
1.3 LightGBM的应用
LightGBM在机器学习与数据挖掘领域有着极为广泛的应用。据统计LightGBM模型自2016到2019年在Kaggle平台上累积获得数据竞赛前三名三十余次,其中包括CIKM2017 AnalytiCup、IEEE Fraud Detection等知名竞赛。这些竞赛来源于各行各业的真实业务,这些竞赛成绩表明LightGBM具有很好的可扩展性,在各类不同问题上都可以取得非常好的效果。
同时,LightGBM还被成功应用在工业界与学术界的各种问题中。例如金融风控、购买行为识别、交通流量预测、环境声音分类、基因分类、生物成分分析等诸多领域。虽然领域相关的数据分析和特性工程在这些解决方案中也发挥了重要作用,但学习者与实践者对LightGBM的一致选择表明了这一软件包的影响力与重要性。
二、LightGBM重要知识点
2.1 LightGBM的重要参数
2.1.1 基本参数调整
1.num_leaves参数 这是控制树模型复杂度的主要参数,一般的我们会使num_leaves小于(2的 max_depth次方),以防止过拟合。由于LightGBM是leaf-wise建树与XGBoost的depth-wise建 树方法不同,num_leaves比depth有更大的作用。、
2.min_data_in_leaf 这是处理过拟合问题中一个非常重要的参数. 它的值取决于训练数据的样本个 树和 num_leaves参数. 将其设置的较大可以避免生成一个过深的树, 但有可能导致欠拟合. 实际 应用中, 对于大数据集, 设置其为几百或几千就足够了.
3.max_depth 树的深度,depth 的概念在 leaf-wise 树中并没有多大作用, 因为并不存在一个从 leaves 到 depth 的合理映射。
2.1.2 针对训练速度的参数调整
1.通过设置 bagging_fraction 和 bagging_freq 参数来使用 bagging 方法。
2.通过设置 feature_fraction 参数来使用特征的子抽样。
3.选择较小的 max_bin 参数。
4.使用 save_binary 在未来的学习过程对数据加载进行加速。
2.1.3 针对准确率的参数调整
- 使用较大的 max_bin (学习速度可能变慢)
- 使用较小的 learning_rate 和较大的 num_iterations
- 使用较大的 num_leaves (可能导致过拟合)
- 使用更大的训练数据
- 尝试 dart 模式
2.1.4 针对过拟合的参数调整
1.使用较小的 max_bin
2.使用较小的 num_leaves
3.使用 min_data_in_leaf 和 min_sum_hessian_in_leaf
4.通过设置 bagging_fraction 和 bagging_freq 来使用 bagging
5.通过设置 feature_fraction 来使用特征子抽样
6.使用更大的训练数据
7.使用 lambda_l1, lambda_l2 和 min_gain_to_split 来使用正则
8.尝试 max_depth 来避免生成过深的树
2.2 LightGBM原理粗略讲解
LightGBM底层实现了GBDT算法,并且添加了一系列的新特性:
1.基于直方图算法进行优化,使数据存储更加方便、运算更快、鲁棒性强、模型更加稳定等。
2.提出了带深度限制的 Leaf-wise 算法,抛弃了大多数GBDT工具使用的按层生长 (level-wise) 的决策树生长策略,而使用了带有深度限制的按叶子生长策略,可以降低误差,得到更好的 精度。
3.提出了单边梯度采样算法,排除大部分小梯度的样本,仅用剩下的样本计算信息增益,它是 一种在减少数据量和保证精度上平衡的算法。
4.提出了互斥特征捆绑算法,高维度的数据往往是稀疏的,这种稀疏性启发我们设计一种无损 的方法来减少特征的维度。通常被捆绑的特征都是互斥的(即特征不会同时为非零值,像 one- hot),这样两个特征捆绑起来就不会丢失信息。
LightGBM是基于CART树的集成模型,它的思想是串联多个决策树模型共同进行决策。
那么如何串联呢?LightGBM采用迭代预测误差的方法串联。举个通俗的例子,我们现在需要预测一辆车价值3000元。我们构建决策树1训练后预测为2600元,我们发现有400元的误差,那么决策树2的训练目标为400元,但决策树2的预测结果为350元,还存在50元的误差就交给第三棵树……以此类推,每一颗树用来估计之前所有树的误差,最后所有树预测结果的求和就是最终预测结果!
LightGBM的基模型是CART回归树,它有两个特点:(1)CART树,是一颗二叉树。(2)回归树,最后拟合结果是连续值。
LightGBM模型可以表示为以下形式,我们约定f t ( x ) 表示前t 颗树的和,h t ( x ) 表示第t 颗决策树,模型定义如下:
ft(x)=∑t=1Tht(x)
由于模型递归生成,第t tt步的模型由第t − 1 t-1t−1步的模型形成,可以写成:
ft(x)=ft−1(x)+ht(x)
每次需要加上的树h t ( x ) 是之前树求和的误差:
rt,i=yi−fm−1(xi)
我们每一步只要拟合一颗输出为r t ,i的CART树加到f t − 1 ( x )就可以了。
三、实战——基于英雄联盟数据集的LightGBM分类实战
3.1 代码流程
- Step1: 库函数导入
- Step2: 数据读取/载入
- Step3: 数据信息简单查看
- Step4: 可视化描述
- Step5: 利用 LightGBM 进行训练与预测
- Step6: 利用 LightGBM 进行特征选择
- Step7: 通过调整参数获得更好的效果