基于LightGBM的分类预测

一、学习知识点概要

1.1 LightGBM的介绍
1). 2017年经微软推出,XGBoost的升级版
2). 模型精度: 两个模型精度相当
3). 训练速度: LightGBM训练的速度更快 => 1/10
4). 内存消耗: LightGBM占用内存更小 => 1/6
5). 特征缺失值: 两个模型都可以自动处理特征缺失值
6). 分类特征: XGBoost不支持类别特征,需要对其进行onehot编码,而LightGBM支持类别特征
  • LightGBM的主要优点:

      1.简单易用。提供了主流的Python\C++\R语言接口,用户可以轻松使用LightGBM建模并获得相当不错的效果。
      2.高效可扩展。在处理大规模数据集时高效迅速、高准确度,对内存等硬件资源要求不高。
      3.鲁棒性强。相较于深度学习模型不需要精细调参便能取得近似的效果。
      4.LightGBM直接支持缺失值与类别特征,无需对数据额外进行特殊处理
    
  • LightGBM的主要缺点:

      1.相对于深度学习模型无法对时空位置建模,不能很好地捕获图像、语音、文本等高维数据。
      2.在拥有海量训练数据,并能找到合适的深度学习模型时,深度学习的精度可以遥遥领先LightGBM。
    
1.2 LightGBM的应用
金融风控、购买行为识别、交通流量预测、环境声音分类、基因分类、生物成分分析等诸多领域
1.3 学习目标
1. 了解 LightGBM 的参数与相关知识
2. 掌握 LightGBM 的Python调用并将其运用到英雄联盟游戏胜负预测数据集上
1.4 代码流程
Step1: 库函数导入 
Step2: 数据读取/载入 
Step3: 数据信息简单查看 
Step4: 可视化描述 
Step5: 利用 LightGBM 进行训练与预测
Step6: 利用 LightGBM 进行特征选择
Step7: 通过调整参数获得更好的效果

二、学习内容

1.1 基于英雄联盟数据集的LightGBM分类实战
#下载需要用到的数据集
!wget https://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/8LightGBM/high_diamond_ranked_10min.csv
  • 数据描述
特征名称特征意义取值范围
WardsPlaced插眼数量整数
WardsDestroyed拆眼数量整数
FirstBlood是否获得首次击杀整数
Kills击杀英雄数量整数
Deaths死亡数量整数
Assists助攻数量整数
EliteMonsters击杀大型野怪数量整数
Dragons击杀史诗野怪数量整数
Heralds击杀峡谷先锋数量整数
TowersDestroyed推塔数量整数
TotalGold总经济整数
AvgLevel平均英雄等级浮点数
TotalExperience英雄总经验整数
TotalMinionsKilled英雄补兵数量整数
TotalJungleMinionsKilled英雄击杀野怪数量整数
GoldDiff经济差距整数
ExperienceDiff经验差距整数
CSPerMin分均补刀浮点数
GoldPerMin分均经济浮点数
# 1. 导入库函数
#基础函数库
import numpy as np 
import pandas as pd
# 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
# 2. 读取数据
df = pd.read_csv('./high_diamond_ranked_10min.csv')
y = df.blueWins # y label标签
# 3. 数据的简单查看
df.info() # 数据的信息
df.head() # 查看数据的前5行
df.tail() # 查看数据的后5行
y.value_counts() # 查看y值得分布

drop_cols = ['gameId','blueWins'] # 删除无用特征
x = df.drop(drop_cols, axis=1)

x.describe() # 查看数据的统计描述
# 根据上面的描述,我们可以去除一些重复变量,比如只要知道蓝队是否拿到一血,
# 我们就知道红队有没有拿到,可以去除红队的相关冗余数据。
drop_cols = ['redFirstBlood','redKills','redDeaths'
             ,'redGoldDiff','redExperienceDiff', 'blueCSPerMin',
            'blueGoldPerMin','redCSPerMin','redGoldPerMin']
x.drop(drop_cols, axis=1, inplace=True) 
  • 小提琴图 (Violin Plot)是用来展示多组数据的分布状态以及概率密度。这种图表结合了箱形图和密度图的特征,主要用来显示数据的分布形状。

  • 从图中我们可以看出:

      击杀英雄数量越多更容易赢,死亡数量越多越容易输(bluekills与bluedeaths左右的区别)。
      助攻数量与击杀英雄数量形成的图形状类似,说明他们对游戏结果的影响差不多。
      一血的取得情况与获胜有正相关,但是相关性不如击杀英雄数量明显。
      经济差与经验差对于游戏胜负的影响较小。
      击杀野怪数量对游戏胜负的影响并不大。
    
# 4. 可视化描述
data = x.copy()
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std.iloc[:, 0:9]], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')
fig, ax = plt.subplots(1,2,figsize=(15,5))

# 绘制小提琴图
sns.violinplot(x='Features', y='Values', hue='blueWins', data=data, split=True,
               inner='quart', ax=ax[0], palette='Blues')
fig.autofmt_xdate(rotation=45)

data = x.copy()
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std.iloc[:, 9:18]], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')
# 绘制小提琴图
sns.violinplot(x='Features', y='Values', hue='blueWins', 
               data=data, split=True, inner='quart', ax=ax[1], palette='Blues')
fig.autofmt_xdate(rotation=45)
plt.show()
# 查看相关性热力图
plt.figure(figsize=(18,14))
sns.heatmap(round(x.corr(),2), cmap='Blues', annot=True)
plt.show()
  • 去除相关性弱的冗余特征
drop_cols = ['redAvgLevel','blueAvgLevel']
x.drop(drop_cols, axis=1, inplace=True)
  • 画出了插眼数量的散点图,发现不存在插眼数量与游戏胜负间的显著规律。猜测由于钻石分段以上在哪插眼在哪好排眼都是套路,所以数据中前十分钟插眼数拔眼数对游戏的影响不大。所以我们暂时先把这些特征去掉。
sns.set(style='whitegrid', palette='muted')
# 构造两个新特征
x['wardsPlacedDiff'] = x['blueWardsPlaced'] - x['redWardsPlaced']
x['wardsDestroyedDiff'] = x['blueWardsDestroyed'] - x['redWardsDestroyed']

data = x[['blueWardsPlaced','blueWardsDestroyed','wardsPlacedDiff','wardsDestroyedDiff']].sample(1000)
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')

plt.figure(figsize=(10,6))
sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)
plt.xticks(rotation=45)
plt.show()
## 去除和眼位相关的特征
drop_cols = ['blueWardsPlaced','blueWardsDestroyed','wardsPlacedDiff',
            'wardsDestroyedDiff','redWardsPlaced','redWardsDestroyed']
x.drop(drop_cols, axis=1, inplace=True)
  • 我们发现击杀、死亡与助攻数的数据分布差别不大。但是击杀减去死亡、助攻减去死亡的分布与原分布差别很大,因此我们新构造这么两个特征。
x['killsDiff'] = x['blueKills'] - x['blueDeaths']
x['assistsDiff'] = x['blueAssists'] - x['redAssists']

x[['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists']].hist(figsize=(12,10), bins=20)
plt.show()
  • 我们可以发现击杀数与死亡数与助攻数,以及我们构造的特征对数据都有较好的分类能力。
data = x[['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists']].sample(1000)
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')

plt.figure(figsize=(10,6))
sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)
plt.xticks(rotation=45)
plt.show()
  • 一些特征两两组合后对于数据的划分能力也有提升。
data = pd.concat([y, x], axis=1).sample(500)
sns.pairplot(data, vars=['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists'], 
             hue='blueWins')

plt.show()
  • 我们构造了两队之间是否拿到龙、是否拿到峡谷先锋、击杀大型野怪的数量差值,发现在游戏的前期拿到龙比拿到峡谷先锋更容易获得胜利。拿到大型野怪的数量和胜率也存在着强相关。
x['dragonsDiff'] = x['blueDragons'] - x['redDragons']
x['heraldsDiff'] = x['blueHeralds'] - x['redHeralds']
x['eliteDiff'] = x['blueEliteMonsters'] - x['redEliteMonsters']
data = pd.concat([y, x], axis=1)
eliteGroup = data.groupby(['eliteDiff'])['blueWins'].mean()
dragonGroup = data.groupby(['dragonsDiff'])['blueWins'].mean()
heraldGroup = data.groupby(['heraldsDiff'])['blueWins'].mean()
fig, ax = plt.subplots(1,3, figsize=(15,4))
eliteGroup.plot(kind='bar', ax=ax[0])
dragonGroup.plot(kind='bar', ax=ax[1])
heraldGroup.plot(kind='bar', ax=ax[2])
print(eliteGroup)
print(dragonGroup)
print(heraldGroup)
plt.show()
  • 推塔是英雄联盟这个游戏的核心,因此推塔数量可能与游戏的胜负有很大关系。我们绘图发现,尽管前十分钟推掉第一座防御塔的概率很低,但是一旦某只队伍推掉第一座防御塔,获得游戏的胜率将大大增加。
x['towerDiff'] = x['blueTowersDestroyed'] - x['redTowersDestroyed']
data = pd.concat([y, x], axis=1)
towerGroup = data.groupby(['towerDiff'])['blueWins']
print(towerGroup.count())
print(towerGroup.mean())
fig, ax = plt.subplots(1,2,figsize=(15,5))
towerGroup.mean().plot(kind='line', ax=ax[0])
ax[0].set_title('Proportion of Blue Wins')
ax[0].set_ylabel('Proportion')
towerGroup.count().plot(kind='line', ax=ax[1])
ax[1].set_title('Count of Towers Destroyed')
ax[1].set_ylabel('Count')
Step5: 利用 LightGBM 进行训练与预测
from sklearn.model_selection import train_test_split
data_target_part = y
data_features_part = x
# 切分数据集
x_train, x_test, y_train, y_test = train_test_split(data_features_part, data_target_part, test_size = 0.2, random_state = 2020) 

from lightgbm.sklearn import LGBMClassifier
# 定义 LightGBM 模型 
clf = LGBMClassifier()
# 在训练集上训练LightGBM模型
clf.fit(x_train, y_train)

# 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics
# 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
# 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
Step6: 利用 LightGBM 进行特征选择
# 在LightGBM中可以用属性feature_importances_去查看特征的重要度。
sns.barplot(y=data_features_part.columns, x=clf.feature_importances_)

# 可以使用LightGBM中的下列重要属性来评估特征的重要性。
#	 gain:当利用特征做划分的时候的评价基尼指数
#	 split:是以特征用到的次数来评价
from sklearn.metrics import accuracy_score
from lightgbm import plot_importance

def estimate(model,data):

    #sns.barplot(data.columns,model.feature_importances_)
    ax1=plot_importance(model,importance_type="gain")
    ax1.set_title('gain')
    ax2=plot_importance(model, importance_type="split")
    ax2.set_title('split')
    plt.show()
def classes(data,label,test):
    model=LGBMClassifier()
    model.fit(data,label)
    ans=model.predict(test)
    estimate(model, data)
    return ans
 
ans=classes(x_train,y_train,x_test)
pre=accuracy_score(y_test, ans)
print('acc=',accuracy_score(y_test,ans))

Step7: 通过调整参数获得更好的效果
1. learning_rate: 有时也叫作eta,系统默认值为0.3。每一步迭代的步长,很重要。太大了运行准确率不高,太小了运行速度慢。
2. num_leaves:系统默认为32。这个参数控制每棵树中最大叶子节点数量。
3. feature_fraction:系统默认值为1。我们一般设置成0.8左右。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
4. max_depth: 系统默认值为6,我们常用3-10之间的数字。这个值为树的最大深度。这个值是用来控制过拟合的。max_depth越大,模型学习的更加具体。
  • 调节模型参数的方法有贪心算法、网格调参、贝叶斯调参等。这里我们采用网格调参,它的基本思想是穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果
## 从sklearn库中导入网格调参函数
from sklearn.model_selection import GridSearchCV

# 定义参数取值范围
learning_rate = [0.1, 0.3, 0.6]
feature_fraction = [0.5, 0.8, 1]
num_leaves = [16, 32, 64]
max_depth = [-1,3,5,8]

parameters = { 'learning_rate': learning_rate,
              'feature_fraction':feature_fraction,
              'num_leaves': num_leaves,
              'max_depth': max_depth}
model = LGBMClassifier(n_estimators = 50)

# 进行网格搜索
clf = GridSearchCV(model, parameters, cv=3, scoring='accuracy',verbose=3, n_jobs=-1)
clf = clf.fit(x_train, y_train)

# 网格搜索后的最好参数为
clf.best_params_
# 使用最好的参数构建模型进行预测
clf = LGBMClassifier(feature_fraction = 0.8,
                    learning_rate = 0.1,
                    max_depth= 3,
                    num_leaves = 16)
# 在训练集上训练LightGBM模型
clf.fit(x_train, y_train)

train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

三、学习问题与解决

  • 1.使用机器学习解决问题的时候,往往最重要而且最难的是特征工程,特征工程的好坏对模型最终的预测结果有着非常重要的影响
  • 2.特征工程往往比较考验人的耐心,因为需要一个一个属性的去分析,有时可能还需要分析多个属性的交叉,统计等
  • 3.在数据分析时,对数据的理解和对数据进行可视化分析也非常重要

四、总结

1. LightGBM的重要参数
  • 1.1 基本参数调整

    • 1.num_leaves参数: 这是控制树模型复杂度的主要参数,一般的我们会使num_leaves小于(2的max_depth次方),以防止过拟合。由于LightGBM是leaf-wise建树与XGBoost的depth-wise建树方法不同,num_leaves比depth有更大的作用。
    • 2.min_data_in_leaf: 这是处理过拟合问题中一个非常重要的参数. 它的值取决于训练数据的样本个树和 num_leaves参数. 将其设置的较大可以避免生成一个过深的树, 但有可能导致欠拟合. 实际应用中, 对于大数据集, 设置其为几百或几千就足够了.
    • 3.max_depth: 树的深度,depth 的概念在 leaf-wise 树中并没有多大作用, 因为并不存在一个从 leaves 到 depth 的合理映射。
  • 1.2 针对训练速度的参数调整

      1.通过设置 bagging_fraction 和 bagging_freq 参数来使用 bagging 方法。
      2.通过设置 feature_fraction 参数来使用特征的子抽样。
      3.选择较小的 max_bin 参数。
      4.使用 save_binary 在未来的学习过程对数据加载进行加速。
    
  • 1.3 针对准确率的参数调整

      1.使用较大的 max_bin (学习速度可能变慢)
      2.使用较小的 learning_rate 和较大的 num_iterations
      3.使用较大的 num_leaves (可能导致过拟合)
      4.使用更大的训练数据
      5.尝试 dart 模式
    
  • 1.4 针对过拟合的参数调整

      1.使用较小的 max_bin
      2.使用较小的 num_leaves
      3.使用 min_data_in_leaf 和 min_sum_hessian_in_leaf
      4.通过设置 bagging_fraction 和 bagging_freq 来使用 bagging
      5.通过设置 feature_fraction 来使用特征子抽样
      6.使用更大的训练数据
      7.使用 lambda_l1, lambda_l2 和 min_gain_to_split 来使用正则
      8.尝试 max_depth 来避免生成过深的树
    
2. LightGBM原理
  • 针对XGBoost的优化 (LightGBM = XGBoost + Histogram + GOSS + EFB)

      1). Histogram算法: 直方图算法 => 减少候选分裂点数量
      2). GOSS算法: 基于梯度的单边采样算法 => 减少样本的数量
      3). RFB算法: 互斥特征捆绑算法 => 减少特征的数量
    
  • LightGBM的Histogram算法

      1).替代XGBoost的预排序算法
      2). 思想是先连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图,即将连续的特征值离散化到k个bins上
      3). 当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点
      4). XGBoost需要遍历所有离散的值, LightGBM只要遍历k个直方图的值,候选分裂点数量 = k - 1
    
  • GOSS算法

      1). 基于梯度的单边采样算法
      2). 思想是通过样本采样,减少目标函数增益Gain的计算复杂度
      3). 单边采样,只对梯度绝对值较小的样本按照一定比例进行采样,而保留了梯度绝对值较大的样本
      4). 因为目标函数增益主要来自于梯度绝对值较大的样本 => GOSS算法在性能和精度之间进行了很好的trade off
    
  • EFB算法

  •   1). Exclusive Feature Bundling, 互斥特征绑定算法
      2). 思想是特征中包含大量稀疏特征的时候,减少构建直方图的特征数量,从而降低计算复杂度
      3). 数据集中通常会有大量的系数特征 (大部分为0,少量为非0),我们认为这些稀疏特征是互斥的,即不会同时取非零值
      4). EFB算法可以通过对某些特征的取值重新编码,将多个这样互斥的特征绑定为一个新的特征
      5). 类别特征可以转换成onehot编码,这些多个特征的onehot编码是互斥的,可以使用EFB将他们绑定为一个特征
      6). 在LightGBM中,可以直接将每个类别取值和一个bin关联,从而自动地处理它们,也就无需预处理成onehot编码
    
  • 0
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值