资源限制
时间限制:1.0s 内存限制:512.0MB
问题描述
回形取数就是沿矩阵的边取数,若当前方向上无数可取或已经取过,则左转90度。一开始位于矩阵左上角,方向向下。
输入格式
输入第一行是两个不超过200的正整数m, n,表示矩阵的行和列。接下来m行每行n个整数,表示这个矩阵。
输出格式
输出只有一行,共mn个数,为输入矩阵回形取数得到的结果。数之间用一个空格分隔,行末不要有多余的空格。
样例输入
3 3
1 2 3
4 5 6
7 8 9
样例输出
1 4 7 8 9 6 3 2 5
样例输入
3 2
1 2
3 4
5 6
样例输出
1 3 5 6 4 2
#include<iostream>
using namespace std;
int main()
{
int m,n;
cin>>m>>n;
int a[m][n],b[m][n];
for(int i=0;i<m;i++)
for(int j=0;j<n;j++)
{
cin>>a[i][j];
b[i][j]=0;
}
int k=0;
int w=0,s=0;
for(int i=0;i<m*n;i++)
{
cout<<a[w][s];
if(i!=m*n-1)
cout<<" ";
b[w][s]=1;
if(k==0&&b[w+1][s]==0&&w<m-1)
{
w++;
continue;
}
else if(k==0)
{
k=1;
s++;
continue;
}
if(k==1&&b[w][s+1]==0&&s<n-1)
{
s++;
continue;
}
else if(k==1)
{
k=2;
w--;
continue;
}
if(k==2&&b[w-1][s]==0&&w>0)
{
w--;
continue;
}
else if(k==2)
{
k=3;
s--;
continue;
}
if(k==3&&b[w][s-1]==0&&s>0)
{
s--;
continue;
}
else if(k==3)
{
k=0;
w++;
continue;
}
}
}
资源限制
时间限制:1.0s 内存限制:512.0MB
问题描述
平面上有两个矩形,它们的边平行于直角坐标系的X轴或Y轴。对于每个矩形,我们给出它的一对相对顶点的坐标,请你编程算出两个矩形的交的面积。
输入格式
输入仅包含两行,每行描述一个矩形。
在每行中,给出矩形的一对相对顶点的坐标,每个点的坐标都用两个绝对值不超过10^7的实数表示。
输出格式
输出仅包含一个实数,为交的面积,保留到小数后两位。
样例输入
1 1 3 3
2 2 4 4
样例输出
1.00
#include <iostream>
#include<algorithm>
using namespace std;
int main()
{
double x1, x2, x3, x4;
double y1, y2, y3, y4;
cin >> x1 >> y1 >> x2 >> y2;
cin >> x3 >> y3 >> x4 >> y4;
if (x1 > x2) {
swap(x1, x2);
}
if (x3 > x4) {
swap(x3, x4);
}
if (y1 > y2) {
swap(y1, y2);
}
if (y3 > y4) {
swap(y3, y4);
}
double x = max(x1, x3), X = min(x2, x4);
double y = max(y1, y3), Y = min(y2, y4);
double ans = (X - x) * (Y - y);
if ((X - x < 0) || (Y - y < 0))
{
ans = 0;
}
printf("%.2f\n", ans);
return 0;
}
资源限制
时间限制:1.0s 内存限制:512.0MB
问题描述
求出区间[a,b]中所有整数的质因数分解。
输入格式
输入两个整数a,b。
输出格式
每行输出一个数的分解,形如k=a1*a2*a3...(a1<=a2<=a3...,k也是从小到大的)(具体可看样例)
样例输入
3 10
样例输出
3=3
4=2*2
5=5
6=2*3
7=7
8=2*2*2
9=3*3
10=2*5
提示
先筛出所有素数,然后再分解。
数据规模和约定
2<=a<=b<=10000
#include<iostream>
using namespace std;
int main(){
int a,b;
cin>>a>>b;
for(int i=a;i<=b;i++){
int n = i;
cout<<n<<"=";
for(int j=2;j*j <= n;j++){
while(n%j == 0){
n = n/j;
cout<<j;
if(n!=1) cout<<"*";
}
}
if(n!=1) cout<<n;
cout<<endl;
}
return 0;
}