中国七次人口普查数据集

文章详细介绍了中国第七次全国人口普查的结果,包括人口总量、户别人口、地区分布、性别构成、年龄结构、教育水平、城乡人口、流动人口和民族人口等,展示了人口变化趋势,为政策制定提供了统计信息支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中国七次人口普查数据集

数据简介:严格按照指令依法对全国现有人口普遍地、逐户逐人地进行一次全项调查登记,普查重点是掌握分析各地现有人口发展变化、性别比例、出生性别比、单身和适婚人口等,全国人口普查也属于国情国力调查。当今世界各国广泛采用的搜集人口资料的一种最基本的科学方法,全国人口普查各项数据根据统计分析进度,分批及时适时准确公开。  一、普查工作基本情况   根据统计法和《全国人口普查条例》,我国以2020年11月1日零时为标准时点开展了第七次全国人口普查(以下简称七人普),主要目的是全面查清我国人口数量、结构、分布等方面情况,为完善我国人口发展战略和政策体系、制定经济社会发展规划、推动高质量发展提供准确统计信息支持。   七人普全面采用电子化数据采集方式,实时直接上报数据,首次实现普查对象通过扫描二维码进行自主填报,强化部门行政记录和电力、手机等大数据应用,提高了普查工作质量和效率。七人普邀请钟南山、姚明担任宣传大使,“大国点名、没你不行”等宣传口号深入人心,加大了宣传力度。七人普坚持依法进行,认真落实普查方案的各项要求,实行严格的质量控制制度,建立健全普查数据追溯和问责机制,在31个省(自治区、直辖市)中随机抽取141个县的3.2万户进行了事后质量抽查,结果显示,七人普漏登率为0.05%,普查过程严谨规范,普查结果真实可靠。   二、普查主要数据   (一)人口总量。全国人口[注]共141178万人,与2010年(第六次全国人口普查数据,下同)的133972万人相比,增加7206万人,增长5.38%,年平均增长率为0.53%,比2000年到2010年的年平均增长率0.57%下降0.04个百分点。数据表明,我国人口10年来继续保持低速增长态势。   (二)户别人口。全国共有家庭户49416万户,家庭户人口为129281万人;集体户2853万户,集体户人口为11897万人。平均每个家庭户的人口为2.62人,比2010年的3.10人减少0.48人。家庭户规模继续缩小,主要是受我国人口流动日趋频繁和住房条件改善年轻人婚后独立居住等因素的影响。   (三)人口地区分布。东部地区人口占39.93%,中部地区占25.83%,西部地区占27.12%,东北地区占6.98%。与2010年相比,东部地区人口所占比重上升2.15个百分点,中部地区下降0.79个百分点,西部地区上升0.22个百分点,东北地区下降1.20个百分点。人口向经济发达区域、城市群进一步集聚。   (四)性别构成。男性人口为72334万人,占51.24%;女性人口为68844万人,占48.76%。总人口性别比(以女性为100,男性对女性的比例)为105.07,与2010年基本持平,略有降低。出生人口性别比为111.3,较2010年下降6.8。我国人口的性别结构持续改善。   (五)年龄构成。0—14岁人口为25338万人,占17.95%;15—59岁人口为89438万人,占63.35%;60岁及以上人口为26402万人,占18.70%(其中,65岁及以上人口为19064万人,占13.50%)。与2010年相比,0—14岁、15—59岁、60岁及以上人口的比重分别上升1.35个百分点、下降6.79个百分点、上升5.44个百分点。我国少儿人口比重回升,生育政策调整取得了积极成效。同时,人口老龄化程度进一步加深,未来一段时期将持续面临人口长期均衡发展的压力。   (六)受教育程度人口。具有大学文化程度的人口为21836万人。与2010年相比,每10万人中具有大学文化程度的由8930人上升为15467人,15岁及以上人口的平均受教育年限由9.08年提高至9.91年,文盲率由4.08%下降为2.67%。受教育状况的持续改善反映了10年来我国大力发展高等教育以及扫除青壮年文盲等措施取得了积极成效,人口素质不断提高。   (七)城乡人口。居住在城镇的人口为90199万人,占63.89%;居住在乡村的人口为50979万人,占36.11%。与2010年相比,城镇人口增加23642万人,乡村人口减少16436万人,城镇人口比重上升14.21个百分点。随着我国新型工业化、信息化和农业现代化的深入发展和农业转移人口市民化政策落实落地,10年来我国新型城镇化进程稳步推进,城镇化建设取得了历史性成就。   (八)流动人口。人户分离人口为49276万人,其中,市辖区内人户分离人口为11694万人,流动人口为37582万人,其中,跨省流动人口为12484万人。与2010年相比,人户分离人口增长88.52%,市辖区内人户分离人口增长192.66%,流动人口增长69.73%。我国经济社会持续发展,为人口的迁移流动创造了条件,人口流动趋势更加明显,流动人口规模进一步扩大。   (九)民族人口。汉族人口为128631万人,占91.11%;各少数民族人口为12547万人,占8.89%。与2010年相比,汉族人口增长4.93%,各少数民族人口增长10.26%,少数民族人口比重上升0.40个百分点。民族人口稳步增长,充分体现了在中国共产党领导下,我国各民族全面发展进步的面貌。   人口问题始终是我国面临的全局性、长期性、战略性问题,七人普全面查清了我国人口数量、结构、分布等方面情况,准确反映了当前人口变化的趋势性特征,获得了大量宝贵的信息资源,我们正在抓紧对普查数据进行整理、分析和开发,后续会采取更多方式公布和共享普查成果,配合相关部门加强人口发展的前瞻性、战略性研究,最大程度发挥普查的作用,为推动高质量发展、有针对性地制定人口相关战略和政策、促进人口长期均衡发展提供强有力的统计信息支持。

数据空间位置:全国

数据时间:1953-2020

数据格式:EXCEL

 

 欢迎大家关注、收藏和留言~~~~

以上是关于中国七次人口普查数据集详情,欢迎小伙伴们一起学习和分享。

### 第七次全国人口普查数据可视化示例 #### 使用 R 语言进行数据分析与可视化 对于第七次全国人口普查的数据,可以通过R语言强大的统计分析能力来进行深入挖掘。具体而言,在对上海市的人口普查数据探索过程中,已经展示了如何利用R语言中的`ggplot2`包和其他工具来生成高质量的图表和统计数据摘要[^1]。 ```r library(ggplot2) # 创建一个简单的年龄分布直方图 age_distribution <- data.frame( Age = c(0:100), Count = sample.int(n=50, size=101, replace=T) ) p <- ggplot(age_distribution, aes(x=Age, y=Count)) + geom_bar(stat="identity", fill="#69b3a2")+ labs(title='上海市民众按年龄段划分', x='年龄 (岁)', y='人数') print(p) ``` 此代码片段展示了如何基于虚构的年龄分佈數據來繪製一個簡單的直方圖。实际应用中应替换为真实的第七次全国人口普查数据集。 #### 利用 ECharts 实现前端交互式可视化 为了使用户能够在网页上直观地浏览历史及最新的人口变化趋势,可以采用ECharts这样的JavaScript库构建动态折线图。下面是一个具体的例子,它显示了自第一次至最近一次即第七次全国人口普查期间中国人口的增长情况[^2]。 ```html <!DOCTYPE html> <html style="height: 100%"> <head> <!-- 引入 echarts.js --> <script src="https://cdn.jsdelivr.net/npm/echarts@latest/dist/echarts.min.js"></script> </head> <body style="height: 100%; margin: 0"> <div id="main" style="height: 100%"></div> <script type="text/javascript"> var chartDom = document.getElementById('main'); var myChart = echarts.init(chartDom); var option; option = { xAxis: { type: 'category', boundaryGap: false, data: ['1953年','1964年','1982年','1990年','2000年','2010年','2020年'] }, yAxis: { type: 'value' }, series: [{ data: [58260, 69458, 100818, 113368, 126583, 133972, 141178], type: 'line', areaStyle: {} }] }; if (option && typeof option === 'object') { myChart.setOption(option); } </script> </body> </html> ``` 这段HTML文档定义了一个完整的页面结构,并嵌入了一张反映历年人口总数变动的折线图。当浏览器加载该文件时,会自动渲染出一张具有时间轴标签以及相应数值标记的曲线图。 #### Pyecharts 中的数据对比类图形 除了上述两种方法外,还可以考虑使用Python下的Pyecharts库制作更加复杂的多维度比较图表。比如,如果想要同时展现多个地区在同一时间段内的人口增长状况,则可以选择多重柱形图的形式[^3]: ```python from pyecharts.charts import Bar import random bar = ( Bar() .add_xaxis(["{}年".format(i) for i in range(1953, 2021, 10)]) .add_yaxis("北京", [random.randint(50000, 200000) for _ in range(len(range(1953, 2021, 10)))]) .add_yaxis("上海", [random.randint(50000, 200000) for _ in range(len(range(1953, 2021, 10)))]) .set_global_opts(title_opts={"text": "京沪两地近几十年间人口总量对比"}) ) bar.render_notebook() # 如果是在Jupyter Notebook环境中执行的话 ``` 以上三种方式分别代表了不同的技术和应用场景下实现第七次全国人口普查数据可视化的可能性。每种方案都有其特点和适用范围,可以根据项目需求和个人偏好做出选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

地球资源数据云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值