目标检测领域论文速读
文章平均质量分 92
本专栏方向为跨域自适应目标检测方向的论文速读,有无监督、半监督方式,基于对抗学习和生成式GAN方式,还有自训练和互学习方式等。
马甲是掉不了一点的<.<
对深度学习感兴趣的菜鸡
展开
-
论文速读:动态再训练-更新用于无源目标检测的Mean Teacher(ECCV2024)
本文重点研究了在源域不可用的情况下,域自适应目标检测所面临的挑战。本文探讨了自训练均值教师框架恶化的原因,并提出了相应的改进措施。具体来说,我们引入了动态再训练更新机制来促进学生和教师模型的共同进化。在各种SFOD基准测试中,我们的方法显著提高了自训练范式的稳定性和适应性,实现了甚至可与先进的UDA方法相媲美的最先进性能。原创 2024-11-06 22:49:08 · 740 阅读 · 0 评论 -
论文速读:简化目标检测的无源域适应-有效的自我训练策略和性能洞察(ECCV2024)
在这项研究中,我们研究和评估了简单而有效的无源域自适应目标检测方法。在展示了批量归一化的重要性和AdaBN的有效性之后,我们提出了一种无源无偏教师(SF-UT),在Foggy-Cityscapes上取得了最先进的性能,在其他基准测试上取得了具有竞争力的结果。此外,我们引入了一种简单的策略,包括在批量统计适应(AdaBN + fixed SF-FM)之后对一组固定的伪标签进行强增强训练,也产生了令人满意的性能,并显著减轻了自训练中的崩溃问题。原创 2024-11-04 22:03:51 · 1129 阅读 · 0 评论 -
论文速读:完全测试时域适应(Test-time Adaptation)目标检测(CVPR2024)
本文提出了第一种解决目标检测的完全测试时间自适应问题的方法。与目前的领域自适应目标检测器相比,它既不假设目标分布是固定的且已知的,也不需要访问目标数据集,而这在许多应用中是需要的。在三个数据集上的实验结果表明,我们的方法可以有效地使训练好的检测器适应测试时的各种域移位,并带来可观的性能提升。通过消融研究,我们发现每个指标都是有效的,并且它们是互补的,阈值可能会影响性能,并且训练过多的迭代可能会降低测试时的完全适应性。原创 2024-10-31 19:01:46 · 1361 阅读 · 0 评论 -
论文速读:YOLO-G,用于跨域目标检测的改进YOLO(Plos One 2023)
为了缓解跨域目标检测问题,本文分析了主流算法模型的特点,在YOLOV5的基础上提出了一种简单高效的YOLO-G模型。通过引入特征对齐分支和对抗训练,提高了主干模型在提取目标特征方面的一致性,增强了模型的泛化性,实现了更好的跨域检测能力。我们还组织了9组跨域对比实验,本文提出的YOLO-G模型达到了超越一系列SOTA模型的精度,表明其在跨域目标检测任务中具有更好的应用前景。原创 2024-10-25 22:47:35 · 1334 阅读 · 0 评论 -
论文速读:面向单阶段跨域检测的域自适应YOLO(ACML2021)
域转移是目标检测器在实际应用中推广的主要挑战。两级检测器的域自适应新兴技术有助于解决这个问题。然而,两级检测器由于其耗时较长,并不是工业应用的首选。本文提出了一种有效的单阶段跨域自适应DA-YOLO算法。与以往的方法相比,我们在单阶段检测器上建立了域自适应模型。此外,我们还成功地为单阶段检测器引入了实例级自适应。在多个跨域数据集上的充分实验表明,我们的方法优于先前基于Faster R-CNN的方法,并且提出的三个域自适应模块都是有效的。原创 2024-10-24 17:20:51 · 766 阅读 · 0 评论 -
论文速读:基于 YOLO 目标检测的无源域自适应(ECCV2024)
本文提出了首次使用YOLO系列单发探测器的SFDA方法。本文方法采用了一个带有学习的、目标领域特定的增强和一种新的通信机制的师生框架来稳定训练,减少了对模型选择中带注释的目标数据的依赖,这对现实世界的应用至关重要。SF-YOLO 优于所有基于Faster R-CNN的SFDA方法,甚至一些使用源数据的基于UDA yolo的方法。原创 2024-10-23 19:39:47 · 1200 阅读 · 0 评论 -
论文速读:多源域自适应目标检测中的目标相关知识保存(CVPR2022)
领域自适应目标检测(DAOD)是一种很有前途的方法,可以缓解检测器在新场景下的性能下降。尽管在单源域适应方面做出了巨大努力,但由于组合过程中的知识退化,具有多个源域的更通用的任务仍未得到很好的探索。为了解决这个问题,作者提出了一种新的无监督多源DAOD方法,即目标相关知识保存(target relevant knowledge preservation,TRKP)。在各种广泛使用的基准上进行了广泛的实验,取得了sota效果,突出了有效性。原创 2024-10-15 10:49:50 · 866 阅读 · 0 评论 -
论文速读:通过目标感知双分支蒸馏进行跨域目标检测(CVPR2022)
跨域目标检测是一项现实且具有挑战性的任务。由于数据分布的大幅偏移和目标域数据缺乏详细的标注信息,跨域目标检测性能往往不尽人意。为了解决这个问题,作者提出了一种新颖的目标感知双分支蒸馏(TDD)框架。通过将源域和目标域的检测分支集成在统一的师生学习方案中,可以有效地减少域漂移,并产生可靠的监督。作者对跨域目标检测中的许多广泛使用的场景进行了广泛的实验,结果表明,作者的 TDD 在所有基准测试中都显著优于最先进的方法。原创 2024-10-13 18:11:14 · 856 阅读 · 0 评论 -
论文速读:基于概率教师学习的域自适应目标检测
文章通过提出概率教师(PT)框架和熵焦点损失(EFL),在无监督域自适应目标检测领域取得了突破性进展。PT框架通过不确定性引导的自训练,有效地处理了目标域中未标记数据的适应问题,提高了模型在不同域之间的泛化能力。“概率教师”(Probabilistic Teacher, PT)是文章中提出的一种用于无监督域自适应目标检测(UDA-OD)的框架。这个框架的核心思想是利用一个逐渐演化的教师模型来捕获未标记目标数据的不确定性,并通过不确定性引导的一致性训练来指导学生模型的学习。以下是PT框架的关键特点:1.原创 2024-10-08 19:12:40 · 1075 阅读 · 1 评论 -
论文速读:基于渐进式转移的无监督域自适应舰船检测
合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种利用微波信号进行地面或海面监测的主动遥感技术。与传统的光学遥感技术不同,SAR不受天气条件和光照条件的限制,因此可以在夜间或恶劣天气下工作。SAR技术在军事侦察、环境监测、灾害评估和地球科学研究等领域有着广泛的应用。SAR的工作原理简述如下:1. 合成孔径:SAR通过移动的平台(如飞机或卫星)发射和接收微波信号。由于平台的移动,可以模拟一个很长的天线孔径,这称为“合成孔径”。较长的合成孔径可以提高雷达的空间分辨率。原创 2024-10-07 15:24:18 · 1280 阅读 · 0 评论