马甲是掉不了一点的<.<
对深度学习感兴趣的菜鸡
展开
-
ECCV2024新鲜出炉!动态再训练-更新用于无源目标检测的Mean Teacher
本文重点研究了在源域不可用的情况下,域自适应目标检测所面临的挑战。本文探讨了自训练均值教师框架恶化的原因,并提出了相应的改进措施。具体来说,我们引入了动态再训练更新机制来促进学生和教师模型的共同进化。在各种SFOD基准测试中,我们的方法显著提高了自训练范式的稳定性和适应性,实现了甚至可与先进的UDA方法相媲美的最先进性能。原创 2024-11-06 22:48:09 · 474 阅读 · 0 评论 -
ECCV2024新鲜出炉!简化无源域适应的目标检测-有效的自我训练策略和性能洞察
在这项研究中,我们研究和评估了简单而有效的无源域自适应目标检测方法。在展示了批量归一化的重要性和AdaBN的有效性之后,我们提出了一种无源无偏教师(SF-UT),在Foggy-Cityscapes上取得了最先进的性能,在其他基准测试上取得了具有竞争力的结果。原创 2024-11-05 11:40:50 · 523 阅读 · 0 评论 -
CVPR2024:完全测试时域适应(Test-time Adaptation)的目标检测
本文提出了第一种解决目标检测的完全测试时间自适应问题的方法。与目前的领域自适应目标检测器相比,它既不假设目标分布是固定的且已知的,也不需要访问目标数据集,而这在许多应用中是需要的。在三个数据集上的实验结果表明,该方法可以有效地使训练好的检测器适应测试时的各种域移位,并带来可观的性能提升。原创 2024-11-01 12:10:00 · 1321 阅读 · 0 评论 -
巨详细解析!YOLO-G:用于跨域目标检测的改进YOLO(Plos One 2023)
为了缓解跨域目标检测问题,本文分析了主流算法模型的特点,在YOLOV5的基础上提出了一种简单高效的YOLO-G模型。通过引入特征对齐分支和对抗训练,提高了主干模型在提取目标特征方面的一致性,增强了模型的泛化性,实现了更好的跨域检测能力。我们还组织了9组跨域对比实验,本文提出的YOLO-G模型达到了超越一系列SOTA模型的精度,表明其在跨域目标检测任务中具有更好的应用前景。原创 2024-10-26 12:08:54 · 1517 阅读 · 1 评论 -
2021亚洲机器学习会议:面向单阶段跨域检测的域自适应YOLO(ACML2021)
域转移是目标检测器在实际应用中推广的主要挑战。两级检测器的域自适应新兴技术有助于解决这个问题。然而,两级检测器由于其耗时较长,并不是工业应用的首选。本文提出了一种有效的单阶段跨域自适应DA-YOLO算法。与以往的方法相比,我们在单阶段检测器上建立了域自适应模型。此外,我们还成功地为单阶段检测器引入了实例级自适应。在多个跨域数据集上的充分实验表明,我们的方法优于先前基于Faster R-CNN的方法,并且提出的三个域自适应模块都是有效的。原创 2024-10-24 17:17:02 · 878 阅读 · 0 评论 -
新鲜出炉,ECCV2024.9.25 首次提出基于 YOLO 目标检测的无源域自适应
本文提出了首次使用YOLO系列单发探测器的SFDA方法。本文方法采用了一个带有学习的、目标领域特定的增强和一种新的通信机制的师生框架来稳定训练,减少了对模型选择中带注释的目标数据的依赖,这对现实世界的应用至关重要。SF-YOLO 优于所有基于Faster R-CNN的SFDA方法,甚至一些使用源数据的基于UDA yolo的方法。原创 2024-10-23 19:33:46 · 1626 阅读 · 0 评论 -
CVPR2022:多源域自适应目标检测中的目标相关知识保存
领域自适应目标检测(DAOD)是一种很有前途的方法,可以缓解检测器在新场景下的性能下降。尽管在单源域适应方面做出了巨大努力,但由于组合过程中的知识退化,具有多个源域的更通用的任务仍未得到很好的探索。为了解决这个问题,作者提出了一种新的无监督多源DAOD方法,即目标相关知识保存(target relevant knowledge preservation,TRKP)。具体而言,TRKP采用师生框架,构建多头教师网络,从已标记的源域数据中提取知识,引导学生网络学习未标记的目标域的检测器。原创 2024-10-17 01:35:52 · 1490 阅读 · 0 评论 -
CVPR2022:通过目标感知双分支蒸馏的跨域目标检测
跨域目标检测是一项现实且具有挑战性的任务。由于数据分布的大幅偏移和目标域数据缺乏详细的标注信息,跨域目标检测性能往往不尽人意。为了解决这个问题,作者提出了一种新颖的目标感知双分支蒸馏(TDD)框架。通过将源域和目标域的检测分支集成在统一的师生学习方案中,可以有效地减少域漂移,并产生可靠的监督。作者对跨域目标检测中的许多广泛使用的场景进行了广泛的实验,结果表明,作者的 TDD 在所有基准测试中都显著优于最先进的方法。原创 2024-10-14 00:42:14 · 1297 阅读 · 0 评论 -
ICML2022:基于概率教师学习的跨域自适应目标检测
在本文中,作者提出了一个简单而有效的框架,称为概率教师(PT,Probabilistic Teacher),旨在从逐渐发展的教师中捕捉未标记目标数据的不确定性,并以互惠互利的方式指导学生的学习。该方法在多个基于源的/无源的 UDA-OD 基准测试中取得了最先进的结果,并大幅超越了以前的方法。原创 2024-10-09 23:01:56 · 1535 阅读 · 0 评论 -
论文精读:基于渐进式转移的无监督域自适应舰船检测
近年来,基于CNN卷积神经网络的合成孔径雷达(SAR)舰船检测方法在遥感领域受到了广泛关注。然而,这些方法需要大量经过标注的SAR图像来训练网络,并且SAR图像的标注比光学图像的标注更昂贵和耗时。为了解决SAR图像缺乏标注信息的问题,本文提出了一种基于渐进式转移的无监督域自适应船舶检测方法,该方法可以从像素级、特征级和预测级逐步实现光学域和SAR域之间的知识转移。原创 2024-10-08 15:11:06 · 1533 阅读 · 0 评论