题意是给你一个矩阵,每个单元格都会有数字,求每两个相同数字之间的曼哈顿距离的总和是多少
注意:这里的数据范围有一个是n*m<500000,可以确定范围了是吧,可是不能直接开一个N*N的什么数组,有一种可能,n很小,m很大;所以开的数组范围要根据你输入的nm来开
分析:我本来的想法是把同一个数的每个坐标记录一下,然后On²来算的,铁超时,算了
有一种方法,反正最后是算总的曼哈顿距离,所以总的行+总的列的值而不是算单个的
拿行来举例:
看看每到一行,之前所有遍历过的行里面相同的数字有多少个,i*cnt[],可是每一个数字又有本身的行的标号,不可能都是初始为0,所以就是拿总的i*cnt[]的值减去多的,比如有的数字在第一层:-1,第二层:-2...就好了
列的类比
下面看代码:
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#define IOS ios::sync_with_stdio(false), cin.tie(0);
#include<iostream>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
using namespace std;
#define int long long
typedef long long ll;
typedef pair<int,int> PAII;
const int N=2e6+10,M=5050,INF=1e18,mod=998244353;
int cnt[N],a[N];
signed main(){
//IOS;
int T;
T=1;
//cin>>T;
while(T--)
{
int n, m;
cin >> n >> m;
int g[n + 10][m + 10];
int sum = 0;
int maxn = -1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin >> g[i][j];
int x = g[i][j];
maxn = max(maxn, g[i][j]);
sum += i * cnt[x] - a[x];
cnt[x] ++;
a[x] += i;
}
}
for(int i=1;i<=maxn;i++) cnt[i] = 0, a[i] = 0;
for(int j=1;j<=m;j++)
{
for(int i=1;i<=n;i++)
{
int x = g[i][j];
sum += j * cnt[x] - a[x];
cnt[x] ++;
a[x] += j;
}
}
cout<<sum;
}
return 0;
}
/*
*/