数据结构刷题:第六天

目录

一,字符串中的第一个唯一字符

1,使用哈希表存储频数

思路与算法

复杂度分析

2,使用哈希表存储索引

思路与算法

复杂度分析

3,队列

思路与算法

小贴士

复杂度分析

二,赎金信

1,字符统计 

复杂度分析

三,有效的字母异位词

​编辑1,排序

复杂度分析

2,哈希表

复杂度分析

一,字符串中的第一个唯一字符

387. 字符串中的第一个唯一字符 - 力扣(LeetCode)icon-default.png?t=M7J4https://leetcode.cn/problems/first-unique-character-in-a-string/?plan=data-structures&plan_progress=ggfacv7

1,使用哈希表存储频数

思路与算法

我们可以对字符串进行两次遍历。

在第一次遍历时,我们使用哈希映射统计出字符串中每个字符出现的次数。在第二次遍历时,我们只要遍历到了一个只出现一次的字符,那么就返回它的索引,否则在遍历结束后返回 −1。

class Solution {
public:
    int firstUniqChar(string s) {
        unordered_map<int, int> frequency;
        for (char ch: s) {
            ++frequency[ch];
        }
        for (int i = 0; i < s.size(); ++i) {
            if (frequency[s[i]] == 1) {
                return i;
            }
        }
        return -1;
    }
};

复杂度分析

时间复杂度:O(n),其中 n 是字符串 s 的长度。我们需要进行两次遍历。

空间复杂度:O(∣Σ∣),其中 Σ 是字符集,在本题中 s 只包含小写字母,因此 ∣Σ∣≤26。我们需要 O(∣Σ∣) 的空间存储哈希映射。

2,使用哈希表存储索引

思路与算法

我们可以对方法一进行修改,使得第二次遍历的对象从字符串变为哈希映射。

具体地,对于哈希映射中的每一个键值对,键表示一个字符,值表示它的首次出现的索引(如果该字符只出现一次)或者 −1(如果该字符出现多次)。当我们第一次遍历字符串时,设当前遍历到的字符为 c,如果 c 不在哈希映射中,我们就将 cc 与它的索引作为一个键值对加入哈希映射中,否则我们将 c 在哈希映射中对应的值修改为 −1。

在第一次遍历结束后,我们只需要再遍历一次哈希映射中的所有值,找出其中不为 -1 的最小值,即为第一个不重复字符的索引。如果哈希映射中的所有值均为 −1,我们就返回 −1。

class Solution {
public:
    int firstUniqChar(string s) {
        unordered_map<int, int> position;
        int n = s.size();
        for (int i = 0; i < n; ++i) {
            if (position.count(s[i])) {
                position[s[i]] = -1;
            }
            else {
                position[s[i]] = i;
            }
        }
        int first = n;
        for (auto [_, pos]: position) {
            if (pos != -1 && pos < first) {
                first = pos;
            }
        }
        if (first == n) {
            first = -1;
        }
        return first;
    }
};

复杂度分析

时间复杂度:O(n),其中 n 是字符串 s 的长度。第一次遍历字符串的时间复杂度为 O(n),第二次遍历哈希映射的时间复杂度为 O(∣Σ∣),由于 ss 包含的字符种类数一定小于 s 的长度,因此 O(∣Σ∣) 在渐进意义下小于 O(n),可以忽略。

空间复杂度:O(∣Σ∣),其中 Σ 是字符集,在本题中 s 只包含小写字母,因此 ∣Σ∣≤26。我们需要 O(∣Σ∣) 的空间存储哈希映射。

3,队列

思路与算法

我们也可以借助队列找到第一个不重复的字符。队列具有「先进先出」的性质,因此很适合用来找出第一个满足某个条件的元素。

具体地,我们使用与方法二相同的哈希映射,并且使用一个额外的队列,按照顺序存储每一个字符以及它们第一次出现的位置。当我们对字符串进行遍历时,设当前遍历到的字符为 c,如果 c 不在哈希映射中,我们就将 c 与它的索引作为一个二元组放入队尾,否则我们就需要检查队列中的元素是否都满足「只出现一次」的要求,即我们不断地根据哈希映射中存储的值(是否为 −1)选择弹出队首的元素,直到队首元素「真的」只出现了一次或者队列为空。

在遍历完成后,如果队列为空,说明没有不重复的字符,返回 −1,否则队首的元素即为第一个不重复的字符以及其索引的二元组。

小贴士

在维护队列时,我们使用了「延迟删除」这一技巧。也就是说,即使队列中有一些字符出现了超过一次,但它只要不位于队首,那么就不会对答案造成影响,我们也就可以不用去删除它。只有当它前面的所有字符被移出队列,它成为队首时,我们才需要将它移除。

class Solution {
public:
    int firstUniqChar(string s) {
        unordered_map<char, int> position;
        queue<pair<char, int>> q;
        int n = s.size();
        for (int i = 0; i < n; ++i) {
            if (!position.count(s[i])) {
                position[s[i]] = i;
                q.emplace(s[i], i);
            }
            else {
                position[s[i]] = -1;
                while (!q.empty() && position[q.front().first] == -1) {
                    q.pop();
                }
            }
        }
        return q.empty() ? -1 : q.front().second;
    }
};

 

复杂度分析

时间复杂度:O(n),其中 n 是字符串 s 的长度。遍历字符串的时间复杂度为 O(n),而在遍历的过程中我们还维护了一个队列,由于每一个字符最多只会被放入和弹出队列最多各一次,因此维护队列的总时间复杂度为O(∣Σ∣),由于 s 包含的字符种类数一定小于 s 的长度,因此 O(∣Σ∣) 在渐进意义下小于 O(n),可以忽略。

空间复杂度:O(∣Σ∣),其中Σ 是字符集,在本题中 s 只包含小写字母,因此∣Σ∣≤26。我们需要 O(∣Σ∣) 的空间存储哈希映射以及队列。

二,赎金信

383. 赎金信 - 力扣(LeetCode)icon-default.png?t=M7J4https://leetcode.cn/problems/ransom-note/

1,字符统计 

题目要求使用字符串magazine中的字符来构建新的字符串ransomNote,且ransomNote中的每个字符只能使用一次,只需要满足字符串magazine中的每个英文母('a'-'z')的统计次数都大于等于ransomNote中相同字母的统计次数即可。
●如果字符串magazine 的长度小于字符串ransomNote的长度,则我们可以肯定magazine无法构成ransomNote,此时直接返回false。
●首先统计magazine; 中每个英文字母a的次数cnt[a],再遍历统计ransomNote中每个英文字母
的次数,如果发现ransomNote中存在某个英文字母c的统计次数大于magazir
中该字母统计次数cnt[c],则此时我们直接返回false。
 

class Solution {
public:
    bool canConstruct(string ransomNote, string magazine) {
        if (ransomNote.size() > magazine.size()) {
            return false;
        }
        vector<int> cnt(26);
        for (auto & c : magazine) {
            cnt[c - 'a']++;
        }
        for (auto & c : ransomNote) {
            cnt[c - 'a']--;
            if (cnt[c - 'a'] < 0) {
                return false;
            }
        }
        return true;
    }
};

复杂度分析


●时间复杂度: O(m+n),其中m是字符串ransomNote的长度,n是字符串
magazine的长度,我们只需要遍历两个字符一-次即可。
●空间复杂度: O(|S|), S是字符集,这道题中S为全部小写英语字母,因此|S|= 26。
 

三,有效的字母异位词

242. 有效的字母异位词 - 力扣(LeetCode)icon-default.png?t=M7J4https://leetcode.cn/problems/valid-anagram/?plan=data-structures&plan_progress=ggfacv7

1,排序

t 是 s 的异位词等价于「两个字符串排序后相等」。因此我们可以对字符串 s 和 t 分别排序,看排序后的字符串是否相等即可判断。此外,如果 s 和 t 的长度不同,t 必然不是 s 的异位词。

class Solution {
public:
    bool isAnagram(string s, string t) {
        if (s.length() != t.length()) {
            return false;
        }
        sort(s.begin(), s.end());
        sort(t.begin(), t.end());
        return s == t;
    }
};

复杂度分析


●时间复杂度: O(nlogn), 其中n为s的长度。排序的时间复杂度为O(n logn),比较两个字符串是否相等时间复杂度为O(n),因此总体时间复杂度为O(nlogn+ n) = O(n logn)。
●空间复杂度: O(logn)。 排序需要O(logn)的空间复杂度。注意,在某些语言(比如Java&JavaScript)中字符串是不可变的,因此我们需要额外的O(n)的空间来拷贝字符串。但是我们
忽略这一复杂度分析,因为:
。这依赖于语言的细节;
。这取决于函数的设计方式,例如,可以将函数参数类型更改为char[] 。
 

2,哈希表

从另一个角度考虑,t 是 s 的异位词等价于「两个字符串中字符出现的种类和次数均相等」。由于字符串只包含 26 个小写字母,因此我们可以维护一个长度为 26 的频次数组 table,先遍历记录字符串 s 中字符出现的频次,然后遍历字符串 t,减去 table 中对应的频次,如果出现 table[i]<0,则说明 t 包含一个不在 s 中的额外字符,返回 false 即可。

class Solution {
public:
    bool isAnagram(string s, string t) {
        if (s.length() != t.length()) {
            return false;
        }
        vector<int> table(26, 0);
        for (auto& ch: s) {
            table[ch - 'a']++;
        }
        for (auto& ch: t) {
            table[ch - 'a']--;
            if (table[ch - 'a'] < 0) {
                return false;
            }
        }
        return true;
    }
};

对于进阶问题,Unicode 是为了解决传统字符编码的局限性而产生的方案,它为每个语言中的字符规定了一个唯一的二进制编码。而 Unicode 中可能存在一个字符对应多个字节的问题,为了让计算机知道多少字节表示一个字符,面向传输的编码方式的 UTF−8 和 UTF−16 也随之诞生逐渐广泛使用,具体相关的知识读者可以继续查阅相关资料拓展视野,这里不再展开。

回到本题,进阶问题的核心点在于「字符是离散未知的」,因此我们用哈希表维护对应字符的频次即可。同时读者需要注意 Unicode 一个字符可能对应多个字节的问题,不同语言对于字符串读取处理的方式是不同的。

复杂度分析

  • 时间复杂度:O(n)O(n),其中 n 为 s 的长度。

  • 空间复杂度:O(S),其中 S 为字符集大小,此处S=26。

class Solution {
public:
    bool isAnagram(string s, string t) {
        int freq[26] {};
        for (char ch : s) ++freq[ch - 'a'];
        for (char ch : t) --freq[ch - 'a'];
        return all_of(begin(freq), end(freq), [](int x) { return x == 0; });
    }
};

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Master configuration Find the my.cnf file Configure under [mysqld] [mysqld] server-id=1 log-bin=master-bin   Restart the service and log in to mysql Create a user to obtain the log file. mysql> CREATE USER 'sree'@'%' IDENTIFIED BY 'sree' Grant relevant permissions (copy permissions) *.* represents all tables in all libraries mysql> grant replication slave on *.* to 'sree'@'%'   Refresh permissions mysql> flush privileges mysql> show master status; | File | Position | master-bin.000004 | 120                      Slave configuration ==================== Modify the configuration file: Configure under [mysqld] [mysqld] server-id=2 #As long as it is different from the above.   Then log in to mysql mysql>  CHANGE MASTER TO     MASTER_LOG_FILE='master-bin.000004 ', #above file        MASTER_LOG_POS = 120 ; #The above position        MASTER_HOST='192.168.249.130', #The ip address of the main library         MASTER_USER = 'sree',         MASTER_PASSWORD = 'sree',  Then start slave ============ mysql> show slave status\G; see: ===  Slave_IO_Running: Yes  Slave_SQL_Running: Yes It means that it was successful.     Errors in the whole process: Slave_IO_Running: Connecting 1. Mine is the wrong host ip. 2. There are still some firewalls on the Internet that are not turned off I use centos7 to turn off the firewall: systemctl stop firewalld 3. There is also a mistake in the above-mentioned secret.   Fatal error: The slave I/O thread stops because master and slave have equal MySQL server UUIDs This error generally occur when we clone the master to slaver. Delete auto.cnf of mysql, and then restart the service.
作为前端开发者,掌握数据结构算法是非常重要的。这可以帮助您更好地设计和实现前端应用程序,提高代码的效率和性能。以下是一些建议,可以帮助前端开发者掌握数据结构算法: 1. 学习基础知识:首先需要了解基本的数据结构算法,例如数组、链表、栈、队列、哈希表、排序算法、查找算法等等。可以通过阅读相关的书籍或在线教程来学习这些知识。 2. 刷题:练习是掌握数据结构算法的最好方法。可以刷LeetCode、Hackerrank等在线刷题网站上的算法题目。逐渐地,您可以尝试解决更复杂的问题,并更好地理解算法的实现和应用。 3. 实践项目:在实际项目中,可以运用已掌握的数据结构算法。例如,可以使用二叉树来构建导航栏,使用哈希表来处理用户输入,使用动态规划来解决复杂的问题等等。 4. 学习前端框架:学习流行的前端框架(如React,Vue等),它们提供了大量的优化技术和工具,可以帮助您更好地处理数据结构算法方面的问题。 5. 加入社区:参与在线社区、论坛或技术博客,了解前端开发者如何使用数据结构算法来解决实际问题。这也可以帮助您了解当前前端开发领域的最新趋势和技术。 总之,掌握数据结构算法需要坚持学习和不断练习。只有通过不断学习和实践,才能不断提高自己的技能和水平。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喜欢吃豆

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值