二分:四平方和

第七届蓝桥杯省赛C++A/B组


题目链接

题意

输入一个整数n
输出至少4个数使得这四个数那个数的平方和为n。零也是可以的。

思路1

  • 1.纯暴力的思想就是先算出第一个数,第二个数,第三个数,然后在用n减第一个,第二个,第三个数的平方和,开根号求得第四个数的和。(原题会AC,但是ACwing可能会超时。)

代码

#include<iostream> 
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
int main()
{
	int n;
	cin>>n;
	for(int a=0;a*a<=n;a++)//a表示第个数的值, 
	{
		for(int b=a;a*a+b*b<=n;b++)//b表示第二个数, 
		{
			for(int c=b;a*a+b*b+c*c<=n;c++)
			{
				int t=n-a*a-b*b-c*c;//表示第四个数平方的值。
				int d=sqrt(t);
				if(d*d==t)//当d*d等于t的适合,则表示当前有解。
				{
					cout<<a<<" "<<b<<" "<<c<<" "<<d<<endl;
					return 0;//退出循环。 
				 } 
			}
		}
	}
	return 0;
 } 

思路2

  • 1.使用二分求答案思路的话和上面纯暴力差不多。

代码

#include<iostream>
#include<algorithm> 
#include<cstring>
#include<cstdio>
using namespace std;
const int N=2500010;//范围。 
struct sum
{
	int s;//表示c和d的平方的和。 
	int c;
	int d;
	bool operator < (const sum &t)const
	{
		if(s!=t.s) return s<t.s;
		if(c!=t.c) return c<t.c;
		return  d<t.d;
	}   
	
}sum [N];

int n,m;//m表示我们所组合的个数。
int main()
{
	cin>>n;
	for(int c=0;c*c<=n;c++)
	{
		for(int d=c;c*c+d*d<=n;d++)
		{
			sum[m++]={c*c+d*d,c,d};//c*c+d*d表示上面结构体函数当中的s。m++表示小标加一。 
		}
	 } 
	 sort(sum,sum+m);
	 for(int a=0;a*a<=n;a++)//第一个数 
	 {
	 	for(int b=0;a*a+b*b<=n;b++)//第二个数 
	 	{
	 		int t=n-a*a-b*b;//t表示cd的平方和。
			int l = 0;
			int r = m-1;
			while(l<r)
			{
				int mid=(l+r)/2;
				if(sum[mid].s>=t) r = mid;//sum[mid].s表示上面结构体 的s 这个二分做的就是 读取的数组当如果有一个s等于t时候,当前a,b是有解的。 
				else l = mid +1;
			}
			if(sum[l].s==t)
			{
				cout<<a<<" "<<b<<" "<<sum[l].c<<" "<<sum[l].d<<endl;//输出。 
				return 0;
			} 
				
		 }
	  } 
	return 0;
}

坑点

  • 1.时间复杂的注意。

总结

二分。

### 实现四平方和定理的Python代码 为了验证四平方和定理,即任意自然数可以表示成最多四个整数的平方之和,下面提供了一种通过穷举法来寻找符合条件的四个整数的方法[^1]。 ```python #!/usr/bin/python3 # -*- coding: utf-8 -*- # @desc: 验证四平方和定理 def find_four_squares(number): """ 查找给定自然数由四个整数平方组成的组合。 参数: number (int): 用户输入的一个自然数 返回: tuple or None: 如果找到合适的四个整数组合则返回该元组;否则返回None """ for x1 in range(int(number**0.5), -1, -1): for x2 in range(int((number-x1*x1)**0.5), -1, -1): for x3 in range(int((number-x1*x1-x2*x2)**0.5), -1, -1): x4 = (number-x1*x1-x2*x2-x3*x3)**0.5 if x4.is_integer(): return (x1, x2, x3, int(x4)) return None if __name__ == "__main__": try: num_input = int(input("请输入一个正整数:")) result = find_four_squares(num_input) if result is not None: print(f"{num_input}={result[0]}²+{result[1]}²+{result[2]}²+{result[3]}²") else: print("未找到满足条件的结果") except ValueError as e: print("输入错误,请确认您输入的是有效的正整数。") ``` 这段代码定义了一个`find_four_squares()`函数用于查找能够组成目标自然数n的最大可能值作为第一个变量x1,并依次减少直到最小可能性(-1),接着对于剩余部分继续尝试其他三个变量x2,x3,x4的可能性直至成功匹配或遍历结束。当找到了一组解时立即停止搜索并输出结果[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值