极客时间-数据结构与算法之美(六)

37 | 贪心算法:如何用贪心算法实现Huffman压缩编码?

贪心算法有很多经典的应用,比如霍夫曼编码(Huffman Coding)、Prim 和 Kruskal 最小生成树算法、还有 Dijkstra 单源最短路径算法。霍夫曼编码是如何利用贪心算法来实现对数据压缩编码,有效节省数据存储空间的

贪心算法解决问题的步骤。

第一步,当看到这类问题的时候,首先要联想到贪心算法:针对一组数据,定义了限制值和期望值,希望从中选出几个数据,在满足限制值的情况下,期望值最大。

第二步,尝试看下这个问题是否可以用贪心算法解决:每次选择当前情况下,在对限制值同等贡献量的情况下,对期望值贡献最大的数据。

第三步,举几个例子看下贪心算法产生的结果是否是最优的。大部分情况下,举几个例子验证一下就可以了。严格地证明贪心算法的正确性,是非常复杂的,需要涉及比较多的数学推理。而且,从实践的角度来说,大部分能用贪心算法解决的问题,贪心算法的正确性都是显而易见的,也不需要严格的数学推导证明。

实际上,用贪心算法解决问题的思路,并不总能给出最优解。

在这个问题上,贪心算法不工作的主要原因是,前面的选择,会影响后面的选择。所以,即便第一步选择最优的走法,但有可能因为这一步选择,导致后面的选择都很糟糕,最终也就无缘全局最优解了。

贪心算法实战分析

1. 分糖果

有 m 个糖果和 n 个孩子。现在要把糖果分给这些孩子吃,但是糖果少,孩子多(m<n),所以糖果只能分配给一部分孩子。

每个糖果的大小不等,这 m 个糖果的大小分别是 s1,s2,s3,……,sm。除此之外,每个孩子对糖果大小的需求也是不一样的,只有糖果的大小大于等于孩子的对糖果大小的需求的时候,孩子才得到满足。假设这 n 个孩子对糖果大小的需求分别是 g1,g2,g3,……,gn。

如何分配糖果,能尽可能满足最多数量的孩子?

可以把这个问题抽象成,从 n 个孩子中,抽取一部分孩子分配糖果,让满足的孩子的个数(期望值)是最大的。这个问题的限制值就是糖果个数 m。

对于一个孩子来说,如果小的糖果可以满足,就没必要用更大的糖果,这样更大的就可以留给其他对糖果大小需求更大的孩子。另一方面,对糖果大小需求小的孩子更容易被满足,所以,可以从需求小的孩子开始分配糖果。因为满足一个需求大的孩子跟满足一个需求小的孩子,对期望值的贡献是一样的。

每次从剩下的孩子中,找出对糖果大小需求最小的,然后发给他剩下的糖果中能满足他的最小的糖果,这样得到的分配方案,也就是满足的孩子个数最多的方案。

2. 钱币找零

假设有 1 元、2 元、5 元、10 元、20 元、50 元、100 元这些面额的纸币,它们的张数分别是 c1、c2、c5、c10、c20、c50、c100。现在要用这些钱来支付 K 元,最少要用多少张纸币呢?

先用面值最大的来支付,如果不够,就用更小一点面值的,以此类推,最后剩下的用 1 元来补齐。

在贡献相同期望值(纸币数目)的情况下,希望多贡献点金额,这样就可以让纸币数更少,这就是一种贪心算法的解决思路。

3. 区间覆盖

假设有 n 个区间,区间的起始端点和结束端点分别是 [l1, r1],[l2, r2],[l3, r3],……,[ln, rn]。从这 n 个区间中选出一部分区间,这部分区间满足两两不相交(端点相交的情况不算相交),最多能选出多少个区间呢?

 

解决思路:假设这 n 个区间中最左端点是 lmin,最右端点是 rmax。这个问题就相当于,选择几个不相交的区间,从左到右将 [lmin, rmax] 覆盖上。按照起始端点从小到大的顺序对这 n 个区间排序。

每次选择的时候,左端点跟前面的已经覆盖的区间不重合的,右端点又尽量小的,这样可以让剩下的未覆盖区间尽可能的大,就可以放置更多的区间。这实际上就是一种贪心的选择方法。

 

如何用贪心算法实现霍夫曼编码?

假设有一个包含 1000 个字符的文件,每个字符占 1 个 byte(1byte=8bits),存储这 1000 个字符就一共需要 8000bits,那有没有更加节省空间的存储方式呢?

假设通过统计分析发现,这 1000 个字符中只包含 6 种不同字符,假设它们分别是 a、b、c、d、e、f。而 3 个二进制位(bit)就可以表示 8 个不同的字符,所以,为了尽量减少存储空间,每个字符用 3 个二进制位来表示。那存储这 1000 个字符只需要 3000bits 就可以了,比原来的存储方式节省了很多空间。不过,还有没有更加节省空间的存储方式呢?

霍夫曼编码是一种十分有效的编码方法,广泛用于数据压缩中,其压缩率通常在 20%~90% 之间。

霍夫曼编码不仅会考察文本中有多少个不同字符,还会考察每个字符出现的频率,根据频率的不同,选择不同长度的编码。霍夫曼编码试图用这种不等长的编码方法,来进一步增加压缩的效率。如何给不同频率的字符选择不同长度的编码呢?根据贪心的思想,可以把出现频率比较多的字符,用稍微短一些的编码;出现频率比较少的字符,用稍微长一些的编码。

对于等长的编码来说,解压缩起来很简单。比如刚才那个例子中,用 3 个 bit 表示一个字符。在解压缩的时候,每次从文本中读取 3 位二进制码,然后翻译成对应的字符。但是,霍夫曼编码是不等长的,每次应该读取 1 位还是 2 位、3 位等等来解压缩呢?为了避免解压缩过程中的歧义,霍夫曼编码要求各个字符的编码之间,不会出现某个编码是另一个编码前缀的情况。

假设这 6 个字符出现的频率从高到低依次是 a、b、c、d、e、f。把它们编码下面这个样子,任何一个字符的编码都不是另一个的前缀,在解压缩的时候,每次会读取尽可能长的可解压的二进制串,所以在解压缩的时候也不会歧义。经过这种编码压缩之后,这 1000 个字符只需要 2100bits 就可以了。

 

尽管霍夫曼编码的思想并不难理解,但是如何根据字符出现频率的不同,给不同的字符进行不同长度的编码呢?这里的处理稍微有些技巧。

把每个字符看作一个节点,并且辅带着把频率放到优先级队列中。从队列中取出频率最小的两个节点 A、B,然后新建一个节点 C,把频率设置为两个节点的频率之和,并把这个新节点 C 作为节点 A、B 的父节点。最后再把 C 节点放入到优先级队列中。重复这个过程,直到队列中没有数据。

 

现在,给每一条边加上画一个权值,指向左子节点的边统统标记为 0,指向右子节点的边,统统标记为 1,那从根节点到叶节点的路径就是叶节点对应字符的霍夫曼编码。

 

实际上,贪心算法适用的场景比较有限。这种算法思想更多的是指导设计基础算法。比如最小生成树算法、单源最短路径算法,这些算法都用到了贪心算法。

贪心算法的最难的一块是如何将要解决的问题抽象成贪心算法模型,只要这一步搞定之后,贪心算法的编码一般都很简单。贪心算法解决问题的正确性虽然很多时候都看起来是显而易见的,但是要严谨地证明算法能够得到最优解,并不是件容易的事。所以,很多时候,只需要多举几个例子,看一下贪心算法的解决方案是否真的能得到最优解就可以了。

38 | 分治算法:谈一谈大规模计算框架MapReduce中的分治思想

如何理解分治算法?

分治算法(divide and conquer)的核心思想是分而治之 ,也就是将原问题划分成 n 个规模较小,并且结构与原问题相似的子问题,递归地解决这些子问题,然后再合并其结果,就得到原问题的解。

这个定义看起来有点类似递归的定义。分治算法是一种处理问题的思想,递归是一种编程技巧。实际上,分治算法一般都比较适合用递归来实现。分治算法的递归实现中,每一层递归都会涉及这样三个操作:

  • 分解:将原问题分解成一系列子问题;

  • 解决:递归地求解各个子问题,若子问题足够小,则直接求解;

  • 合并:将子问题的结果合并成原问题。

分治算法能解决的问题,一般需要满足下面这几个条件:

  • 原问题与分解成的小问题具有相同的模式;

  • 原问题分解成的子问题可以独立求解,子问题之间没有相关性,这一点是分治算法跟动态规划的明显区别;

  • 具有分解终止条件,也就是说,当问题足够小时,可以直接求解;

  • 可以将子问题合并成原问题,而这个合并操作的复杂度不能太高,否则就起不到减小算法总体复杂度的效果了。

分治算法应用举例分析

用有序度来表示一组数据的有序程度,用逆序度表示一组数据的无序程度。

假设有 n 个数据,期望数据从小到大排列,那完全有序的数据的有序度就是 n(n-1)/2,逆序度等于 0;相反,倒序排列的数据的有序度就是 0,逆序度是 n(n-1)/2。除了这两种极端情况外,通过计算有序对或者逆序对的个数,来表示数据的有序度或逆序度。

如何编程求出一组数据的有序对个数或者逆序对个数呢

最笨的方法是,拿每个数字跟它后面的数字比较,看有几个比它小的。把比它小的数字个数记作 k,通过这样的方式,把每个数字都考察一遍之后,然后对每个数字对应的 k 值求和,最后得到的总和就是逆序对个数。不过,这样操作的时间复杂度是 O(n^2)。

套用分治的思想来求数组 A 的逆序对个数。可以将数组分成前后两半 A1 和 A2,分别计算 A1 和 A2 的逆序对个数 K1 和 K2,然后再计算 A1 与 A2 之间的逆序对个数 K3。那数组 A 的逆序对个数就等于 K1+K2+K3。

如何快速计算出两个子问题 A1 与 A2 之间的逆序对个数呢?

借助归并排序算法。归并排序中有一个非常关键的操作,就是将两个有序的小数组,合并成一个有序的数组。实际上,在这个合并的过程中,就可以计算这两个小数组的逆序对个数了。每次合并操作,都计算逆序对个数,把这些计算出来的逆序对个数求和,就是这个数组的逆序对个数了。

private int num = 0; // 全局变量或者成员变量
public int count(int[] a, int n) {
num = 0;
mergeSortCounting(a, 0, n-1);
return num;
}
private void mergeSortCounting(int[] a, int p, int r) {
if (p >= r) return;
int q = (p+r)/2;
mergeSortCounting(a, p, q);
mergeSortCounting(a, q+1, r);
merge(a, p, q, r);
}
private void merge(int[] a, int p, int q, int r) {
int i = p, j = q+1, k = 0;
int[] tmp = new int[r-p+1];
while (i<=q && j<=r) {
if (a[i] <= a[j]) {
tmp[k++] = a[i++];
} else {
num += (q-i+1); // 统计 p-q 之间,比 a[j] 大的元素个数
tmp[k++] = a[j++];
}
}
while (i <= q) { // 处理剩下的
tmp[k++] = a[i++];
}
while (j <= r) { // 处理剩下的
tmp[k++] = a[j++];
}
for (i = 0; i <= r-p; ++i) { // 从 tmp 拷贝回 a
a[p+i] = tmp[i];
}
}
​

关于分治算法,还有两道比较经典的问题,可以练习一下。

  • 二维平面上有 n 个点,如何快速计算出两个距离最近的点对?

  • 有两个 n * n 的矩阵 A,B,如何快速求解两个矩阵的乘积 C=A*B?

分治思想在海量数据处理中的应用

比如,给 10GB 的订单文件按照金额排序这样一个需求,因为数据量大,有 10GB,而我们的机器的内存可能只有 2、3GB ,无法一次性加载到内存,也就无法通过使用快排、归并等基础算法来解决了。

要解决这种数据量大到内存装不下的问题,就可以利用分治的思想。可以将海量的数据集合根据某种方法,划分为几个小的数据集合,每个小的数据集合单独加载到内存来解决,然后再将小数据集合合并成大数据集合。实际上,利用这种分治的处理思路,不仅仅能克服内存的限制,还能利用多线程或者多机处理,加快处理的速度。

比如给 10GB 的订单排序,就可以先扫描一遍订单,根据订单的金额,将 10GB 的文件划分为几个金额区间。比如订单金额为 1 到 100 元的放到一个小文件,101 到 200 之间的放到另一个文件,以此类推。这样每个小文件都可以单独加载到内存排序,最后将这些有序的小文件合并,就是最终有序的 10GB 订单数据了。

如果订单数据存储在类似 GFS 这样的分布式系统上,当 10GB 的订单被划分成多个小文件的时候,每个文件可以并行加载到多台机器上处理,最后再将结果合并在一起,这样并行处理的速度也加快了很多。不过,这里有一个点要注意,就是数据的存储与计算所在的机器是同一个或者在网络中靠的很近(比如一个局域网内,数据存取速度很快),否则就会因为数据访问的速度,导致整个处理过程不但不会变快,反而有可能变慢。

为什么说 MapReduce 的本质就是分治思想?

对于谷歌搜索引擎来说,网页爬取、清洗、分析、分词、计算权重、倒排索引等等各个环节中,都会面对海量的数据(比如网页)。所以,利用集群并行处理显然是大势所趋。

一台机器过于低效,那就把任务拆分到多台机器上来处理,最后再将结果合并。这就是分治思想。

实际上,MapReduce 框架只是一个任务调度器,底层依赖 GFS 来存储数据,依赖 Borg 管理机器。它从 GFS 中拿数据,交给 Borg 中的机器执行,并且时刻监控机器执行的进度,一旦出现机器宕机、进度卡壳等,就重新从 Borg 中调度一台机器执行。

尽管 MapReduce 的模型非常简单,但是在 Google 内部应用非常广泛。它除了可以用来处理这种数据与数据之间存在关系的任务,比如统计文件中单词出现的频率。除此之外,它还可以用来处理数据与数据之间没有关系的任务,比如对网页分析、分词等,每个网页可以独立的分析、分词,而这两个网页之间并没有关系。网页几十亿、上百亿,如果单机处理,效率低下,就可以利用 MapReduce 提供的高可靠、高性能、高容错的并行计算框架,并行地处理这几十亿、上百亿的网页。

分治算法用四个字概括就是“分而治之”,将原问题划分成 n 个规模较小而结构与原问题相似的子问题,递归地解决这些子问题,然后再合并其结果,就得到原问题的解。

两种分治算法的典型的应用场景,一个是用来指导编码,降低问题求解的时间复杂度,另一个是解决海量数据处理问题。比如 MapReduce 本质上就是利用了分治思想。

39 | 回溯算法:从电影《蝴蝶效应》中学习回溯算法的核心思

深度优先搜索算法利用的是回溯算法思想。它除了用来指导像深度优先搜索这种经典的算法设计之外,还可以用在很多实际的软件开发场景中,比如正则表达式匹配、编译原理中的语法分析等。

除此之外,很多经典的数学问题都可以用回溯算法解决,比如数独、八皇后、0-1 背包、图的着色、旅行商问题、全排列等等。

如何理解“回溯算法”?

笼统地讲,回溯算法很多时候都应用在“搜索”这类问题上。这里说的搜索,是在一组可能的解中,搜索满足期望的解。

回溯的处理思想,有点类似枚举搜索。枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,把问题求解的过程分为多个阶段。每个阶段,都会面对一个岔路口,先随意选一条路走,当发现这条路走不通的时候,就回退到上一个岔路口,另选一种走法继续走。

举一个经典的回溯例子,那就是八皇后问题。

有一个 8x8 的棋盘,希望往里放 8 个棋子(皇后),每个棋子所在的行、列、对角线都不能有另一个棋子。八皇后问题就是期望找到所有满足这种要求的放棋子方式。

把这个问题划分成 8 个阶段,依次将 8 个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,不停地检查当前的方法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种方法,继续尝试。

回溯算法非常适合用递归代码实现。

int[] result = new int[8];// 全局或成员变量, 下标表示行, 值表示 queen 存储在哪一列
public void cal8queens(int row) { // 调用方式:cal8queens(0);
if (row == 8) { // 8 个棋子都放置好了,打印结果
printQueens(result);
return; // 8 行棋子都放好了,已经没法再往下递归了,所以就 return
}
for (int column = 0; column < 8; ++column) { // 每一行都有 8 中放法
if (isOk(row, column)) { // 有些放法不满足要求
result[row] = column; // 第 row 行的棋子放到了 column 列
cal8queens(row+1); // 考察下一行
}
}
}
private boolean isOk(int row, int column) {// 判断 row 行 column 列放置是否合适
int leftup = column - 1, rightup = column + 1;
for (int i = row-1; i >= 0; --i) { // 逐行往上考察每一行
if (result[i] == column) return false; // 第 i 行的 column 列有棋子吗?
if (leftup >= 0) { // 考察左上对角线:第 i 行 leftup 列有棋子吗?
if (result[i] == leftup) return false;
}
if (rightup < 8) { // 考察右上对角线:第 i 行 rightup 列有棋子吗?
if (result[i] == rightup) return false;
}
--leftup; ++rightup;
}
return true;
}
private void printQueens(int[] result) { // 打印出一个二维矩阵
for (int row = 0; row < 8; ++row) {
for (int column = 0; column < 8; ++column) {
if (result[row] == column) System.out.print("Q ");
else System.out.print("* ");
}
System.out.println();
}
System.out.println();
}
​

两个回溯算法的经典应用

1.0-1 背包

0-1 背包是非常经典的算法问题,很多场景都可以抽象成这个问题模型。这个问题的经典解法是动态规划,不过还有一种简单但没有那么高效的解法,那就是回溯算法。

有一个背包,背包总的承载重量是 Wkg。现在有 n 个物品,每个物品的重量不等,并且不可分割。期望选几件物品,装载到背包中。在不超过所能装载重量的前提下,如何让背包中物品的总重量最大?

这个背包问题,物品是不可分割的,要么装要么不装,所以叫 0-1 背包问题。用回溯算法如何来解决。

对于每个物品来说,都有两种选择,装进背包或者不装进背包。对于 n 个物品来说,总的装法就有 2n 种,去掉总重量超过 Wkg 的,从剩下的装法中选择总重量最接近 Wkg 的。

这里就可以用回溯的方法。可以把物品依次排列,整个问题就分解为了 n 个阶段,每个阶段对应一个物品怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。

当发现已经选择的物品的重量超过 Wkg 之后,就停止继续探测剩下的物品。

public int maxW = Integer.MIN_VALUE; // 存储背包中物品总重量的最大值
// cw 表示当前已经装进去的物品的重量和;i 表示考察到哪个物品了;
// w 背包重量;items 表示每个物品的重量;n 表示物品个数
// 假设背包可承受重量 100,物品个数 10,物品重量存储在数组 a 中,那可以这样调用函数:
// f(0, 0, a, 10, 100)
public void f(int i, int cw, int[] items, int n, int w) {
if (cw == w || i == n) { // cw==w 表示装满了 ;i==n 表示已经考察完所有的物品
if (cw > maxW) maxW = cw;
return;
}
f(i+1, cw, items, n, w);
if (cw + items[i] <= w) {// 已经超过可以背包承受的重量的时候,就不要再装了
f(i+1,cw + items[i], items, n, w);
}
}
​

2. 正则表达式

正则表达式中,最重要的就是通配符,通配符结合在一起,可以表达非常丰富的语义。假设正表达式中只包含“ * ” 和 “ ? ”这两种通配符,并且对这两个通配符的语义稍微做些改变,其中,“ * ”匹配任意多个(大于等于 0 个)任意字符,“ ? ”匹配零个或者一个任意字符。基于以上背景假设,如何用回溯算法,判断一个给定的文本,能否跟给定的正则表达式匹配?

依次考察正则表达式中的每个字符,当是非通配符时,就直接跟文本的字符进行匹配,如果相同,则继续往下处理;如果不同,则回溯。

如果遇到特殊字符的时候,就有多种处理方式了,也就是所谓的岔路口,比如 “*” 有多种匹配方案,可以匹配任意个文本串中的字符,就先随意的选择一种匹配方案,然后继续考察剩下的字符。如果中途发现无法继续匹配下去了,就回到这个岔路口,重新选择一种匹配方案,然后再继续匹配剩下的字符。

public class Pattern {
private boolean matched = false;
private char[] pattern; // 正则表达式
private int plen; // 正则表达式长度
public Pattern(char[] pattern, int plen) {
this.pattern = pattern;
this.plen = plen;
}
public boolean match(char[] text, int tlen) { // 文本串及长度
matched = false;
rmatch(0, 0, text, tlen);
return matched;
}
private void rmatch(int ti, int pj, char[] text, int tlen) {
if (matched) return; // 如果已经匹配了,就不要继续递归了
if (pj == plen) { // 正则表达式到结尾了
if (ti == tlen) matched = true; // 文本串也到结尾了
return;
}
if (pattern[pj] == '*') { // * 匹配任意个字符
for (int k = 0; k <= tlen-ti; ++k) {
rmatch(ti+k, pj+1, text, tlen);
}
} else if (pattern[pj] == '?') { // ? 匹配 0 个或者 1 个字符
rmatch(ti, pj+1, text, tlen);
rmatch(ti+1, pj+1, text, tlen);
} else if (ti < tlen && pattern[pj] == text[ti]) { // 纯字符匹配才行
rmatch(ti+1, pj+1, text, tlen);
}
}
}
​

回溯算法大部分情况下,都是用来解决广义的搜索问题,也就是,从一组可能的解中,选择出一个满足要求的解。回溯算法非常适合用递归来实现,在实现的过程中,剪枝操作是提高回溯效率的一种技巧。利用剪枝,并不需要穷举搜索所有的情况,从而提高搜索效率。

40 | 初识动态规划:如何巧妙解决“双十一”购物时的凑单问题?

0-1 背包问题

对于一组不同重量、不可分割的物品,需要选择一些装入背包,在满足背包最大重量限制的前提下,背包中物品总重量的最大值是多少呢?

回溯的解决方法,就是穷举搜索所有可能的装法,然后找出满足条件的最大值。不过,回溯算法的复杂度比较高,是指数级别的。那有没有什么规律,可以有效降低时间复杂度呢?

// 回溯算法实现。注意:我把输入的变量都定义成了成员变量。
private int maxW = Integer.MIN_VALUE; // 结果放到 maxW 中
private int[] weight = {2,2,4,6,3};  // 物品重量
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
public void f(int i, int cw) { // 调用 f(0, 0)
if (cw == w || i == n) { // cw==w 表示装满了,i==n 表示物品都考察完了
if (cw > maxW) maxW = cw;
return;
}
f(i+1, cw); // 选择不装第 i 个物品
if (cw + weight[i] <= w) {
f(i+1,cw + weight[i]); // 选择装第 i 个物品
}
}
​

假设背包的最大承载重量是 9。有 5 个不同的物品,每个物品的重量分别是 2,2,4,6,3。如果我们把这个例子的回溯求解过程,用递归树画出来,就是下面这个样子:

 

递归树中的每个节点表示一种状态,用(i, cw)来表示。其中,i 表示将要决策第几个物品是否装入背包,cw 表示当前背包中物品的总重量。比如(2,2)表示将要决策第 2 个物品是否装入背包,在决策前,背包中物品的总重量是 2。

从递归树中能发现,有些子问题的求解是重复的,比如图中 f(2, 2) 和 f(3,4) 都被重复计算了两次。可以借助递归那一节讲的“备忘录”的解决方式,记录已经计算好的 f(i, cw),当再次计算到重复的 f(i, cw) 的时候,可以直接从备忘录中取出来用,就不用再递归计算了,这样就可以避免冗余计算。

private int maxW = Integer.MIN_VALUE; // 结果放到 maxW 中
private int[] weight = {2,2,4,6,3};  // 物品重量
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
private boolean[][] mem = new boolean[5][10]; // 备忘录,默认值 false
public void f(int i, int cw) { // 调用 f(0, 0)
if (cw == w || i == n) { // cw==w 表示装满了,i==n 表示物品都考察完了
if (cw > maxW) maxW = cw;
return;
}
if (mem[i][cw]) return; // 重复状态
mem[i][cw] = true; // 记录 (i, cw) 这个状态
f(i+1, cw); // 选择不装第 i 个物品
if (cw + weight[i] <= w) {
f(i+1,cw + weight[i]); // 选择装第 i 个物品
}
}
​

现在来看看动态规划是怎么做的。

把整个求解过程分为 n 个阶段,每个阶段会决策一个物品是否放到背包中。每个物品决策(放入或者不放入背包)完之后,背包中的物品的重量会有多种情况,也就是说,会达到多种不同的状态,对应到递归树中,就是有很多不同的节点。

把每一层重复的状态(节点)合并,只记录不同的状态,然后基于上一层的状态集合,来推导下一层的状态集合。可以通过合并每一层重复的状态,这样就保证每一层不同状态的个数都不会超过 w 个(w 表示背包的承载重量)。于是,我们就成功避免了每层状态个数的指数级增长。

我们用一个二维数组 states[n] [w+1],来记录每层可以达到的不同状态。

第 0 个(下标从 0 开始编号)物品的重量是 2,要么装入背包,要么不装入背包,决策完之后,会对应背包的两种状态,背包中物品的总重量是 0 或者 2。我们用 states[0] [0]=true 和 states[0] [2]=true 来表示这两种状态。

第 1 个物品的重量也是 2,基于之前的背包状态,在这个物品决策完之后,不同的状态有 3 个,背包中物品总重量分别是 0(0+0),2(0+2 or 2+0),4(2+2)。用 states[1] [0]=true,states[1] [2]=true,states[1] [4]=true 来表示这三种状态。

以此类推,直到考察完所有的物品后,整个 states 状态数组就都计算好了。只需要在最后一层,找一个值为 true 的最接近 w(这里是 9)的值,就是背包中物品总重量的最大值。

weight: 物品重量,n: 物品个数,w: 背包可承载重量
public int knapsack(int[] weight, int n, int w) {
boolean[][] states = new boolean[n][w+1]; // 默认值 false
states[0][0] = true;  // 第一行的数据要特殊处理,可以利用哨兵优化
states[0][weight[0]] = true;
for (int i = 1; i < n; ++i) { // 动态规划状态转移
for (int j = 0; j <= w; ++j) {// 不把第 i 个物品放入背包
if (states[i-1][j] == true) states[i][j] = states[i-1][j];
}
for (int j = 0; j <= w-weight[i]; ++j) {// 把第 i 个物品放入背包
if (states[i-1][j]==true) states[i][j+weight[i]] = true;
}
}
for (int i = w; i >= 0; --i) { // 输出结果
if (states[n-1][i] == true) return i;
}
return 0;
}
​

这就是一种用动态规划解决问题的思路。把问题分解为多个阶段,每个阶段对应一个决策。记录每一个阶段可达的状态集合(去掉重复的),然后通过当前阶段的状态集合,来推导下一个阶段的状态集合,动态地往前推进。

动态规划解决方案的时间复杂度是多少呢?耗时最多的部分就是代码中的两层 for 循环,所以时间复杂度是 O(n*w)。n 表示物品个数,w 表示背包可以承载的总重量。

假设有 10000 个物品,重量分布在 1 到 15000 之间,背包可以承载的总重量是 30000。如果用回溯算法解决,用具体的数值表示出时间复杂度,就是 210000。如果用动态规划解决,用具体的数值表示出时间复杂度,就是 10000*30000。虽然看起来也很大,但是比起来,要小太多了。

尽管动态规划的执行效率比较高,但是就刚刚的代码实现来说,需要额外申请一个 n 乘以 w+1 的二维数组,对空间的消耗比较多。所以,有时候动态规划是一种空间换时间的解决思路。有什么办法可以降低空间消耗吗?

实际上,只需要一个大小为 w+1 的一维数组就可以解决这个问题。动态规划状态转移的过程,都可以基于这个一维数组来操作。

public static int knapsack2(int[] items, int n, int w) {
boolean[] states = new boolean[w+1]; // 默认值 false
states[0] = true;  // 第一行的数据要特殊处理,可以利用哨兵优化
states[items[0]] = true;
for (int i = 1; i < n; ++i) { // 动态规划
for (int j = w-items[i]; j >= 0; --j) {// 把第 i 个物品放入背包
if (states[j]==true) states[j+items[i]] = true;
}
}
for (int i = w; i >= 0; --i) { // 输出结果
if (states[i] == true) return i;
}
return 0;
}
​

代码中的第 6 行,j 需要从大到小来处理。如果 j 从小到大处理的话,会出现 for 循环重复计算的问题。

0-1 背包问题升级版

对于一组不同重量、不同价值、不可分割的物品,选择将某些物品装入背包,在满足背包最大重量限制的前提下,背包中可装入物品的总价值最大是多少呢?

这个问题依旧可以用回溯算法来解决。

private int maxV = Integer.MIN_VALUE; // 结果放到 maxV 中
private int[] items = {2,2,4,6,3};  // 物品的重量
private int[] value = {3,4,8,9,6}; // 物品的价值
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
public void f(int i, int cw, int cv) { // 调用 f(0, 0, 0)
if (cw == w || i == n) { // cw==w 表示装满了,i==n 表示物品都考察完了
if (cv > maxV) maxV = cv;
return;
}
f(i+1, cw, cv); // 选择不装第 i 个物品
if (cw + weight[i] <= w) {
f(i+1,cw+weight[i], cv+value[i]); // 选择装第 i 个物品
}
}
​

在递归树中,每个节点表示一个状态。现在需要 3 个变量(i, cw, cv)来表示一个状态。其中,i 表示决策第 i 个物品是否装入背包,cw 表示当前背包中物品的总重量,cv 表示当前背包中物品的总价值。

 

在递归树中,有几个节点的 i 和 cw 是完全相同的,比如 f(2,2,4) 和 f(2,2,3)。在背包中物品总重量一样的情况下,f(2,2,4) 这种状态对应的物品总价值更大,可以舍弃 f(2,2,3) 这种状态,只需要沿着 f(2,2,4) 这条决策路线继续往下决策就可以。

即对于 (i, cw) 相同的不同状态,只需要保留 cv 值最大的那个,继续递归处理,其他状态不予考虑。

如果用回溯算法,这个问题就无用“备忘录”解决了。所以,看看动态规划是不是更容易解决这个问题?

我们还是把整个求解过程分为 n 个阶段,每个阶段会决策一个物品是否放到背包中。每个阶段决策完之后,背包中的物品的总重量以及总价值,会有多种情况,也就是会达到多种不同的状态。

用一个二维数组 states[n] [w+1],来记录每层可以达到的不同状态。不过这里数组存储的值不再是 boolean 类型的了,而是当前状态对应的最大总价值。把每一层中 (i, cw) 重复的状态(节点)合并,只记录 cv 值最大的那个状态,然后基于这些状态来推导下一层的状态。

 

时间复杂度是 O(n * w),空间复杂度也是 O(n*w)。

淘宝的“双十一”购物节有各种促销活动,比如“满 200 元减 50 元”。假设你女朋友的购物车中有 n 个(n>100)想买的商品,她希望从里面选几个,在凑够满减条件的前提下,让选出来的商品价格总和最大程度地接近满减条件(200 元),这样就可以极大限度地“薅羊毛”。

对于这个问题,当然可以利用回溯算法,穷举所有的排列组合,看大于等于 200 并且最接近 200 的组合是哪一个?但是,这样效率太低了点。

实际上,它跟第一个例子中讲的 0-1 背包问题很像,只不过是把“重量”换成了“价格”而已。购物车中有 n 个商品。我们针对每个商品都决策是否购买。每次决策之后,对应不同的状态集合。还是用一个二维数组 states[n] [x],来记录每次决策之后所有可达的状态。不过,这里的 x 值是多少呢?

0-1 背包问题中,找的是小于等于 w 的最大值,x 就是背包的最大承载重量 w+1。对于这个问题来说,要找的是大于等于 200的值中最小的,如果要购买的物品的总价格超过 200 太多,比如 1000,那这个羊毛“薅”得就没有太大意义了。可

public static int knapsack3(int[] weight, int[] value, int n, int w) {
int[][] states = new int[n][w+1];
for (int i = 0; i < n; ++i) { // 初始化 states
for (int j = 0; j < w+1; ++j) {
states[i][j] = -1;
}
}
states[0][0] = 0;
states[0][weight[0]] = value[0];
for (int i = 1; i < n; ++i) { // 动态规划,状态转移
for (int j = 0; j <= w; ++j) { // 不选择第 i 个物品
if (states[i-1][j] >= 0) states[i][j] = states[i-1][j];
}
for (int j = 0; j <= w-weight[i]; ++j) { // 选择第 i 个物品
if (states[i-1][j] >= 0) {
int v = states[i-1][j] + value[i];
if (v > states[i][j+weight[i]]) {
states[i][j+weight[i]] = v;
}
}
}
}
// 找出最大值
int maxvalue = -1;
for (int j = 0; j <= w; ++j) {
if (states[n-1][j] > maxvalue) maxvalue = states[n-1][j];
}
return maxvalue;
}
​

以限定 x 值为 1001。

不过,这个问题不仅要求大于等于 200 的总价格中的最小的,还要找出这个最小总价格对应都要购买哪些商品。实际上,可以利用 states 数组,倒推出这个被选择的商品序列。

// items 商品价格,n 商品个数, w 表示满减条件,比如 200
public static void double11advance(int[] items, int n, int w) {
boolean[][] states = new boolean[n][3*w+1];// 超过 3 倍就没有薅羊毛的价值了
states[0][0] = true;  // 第一行的数据要特殊处理
states[0][items[0]] = true;
for (int i = 1; i < n; ++i) { // 动态规划
for (int j = 0; j <= 3*w; ++j) {// 不购买第 i 个商品
if (states[i-1][j] == true) states[i][j] = states[i-1][j];
}
for (int j = 0; j <= 3*w-items[i]; ++j) {// 购买第 i 个商品
if (states[i-1][j]==true) states[i][j+items[i]] = true;
}
}
int j;
for (j = w; j < 3*w+1; ++j) { 
if (states[n-1][j] == true) break; // 输出结果大于等于 w 的最小值
}
if (j == 3*w+1) return; // 没有可行解
for (int i = n-1; i >= 1; --i) { // i 表示二维数组中的行,j 表示列
if(j-items[i] >= 0 && states[i-1][j-items[i]] == true) {
System.out.print(items[i] + " "); // 购买这个商品
j = j - items[i];
} // else 没有购买这个商品,j 不变。
}
if (j != 0) System.out.print(items[0]);
}
​

状态 (i, j) 只有可能从 (i-1, j) 或者 (i-1, j-value[i]) 两个状态推导过来。所以,就检查这两个状态是否是可达的,也就是 states[i-1] [j] 或者 states[i-1] [j-value[i]] 是否是 true。

如果 states[i-1] [j] 可达,就说明没有选择购买第 i 个商品,如果 states[i-1] [j-value[i]] 可达,那就说明选择了购买第 i 个商品。从中选择一个可达的状态(如果两个都可达,就随意选择一个),然后,继续迭代地考察其他商品是否有选择购买。

41 | 动态规划理论:一篇文章带你彻底搞懂最优子结构、无后效性和重复子问题

“一个模型三个特征”理论讲解

什么样的问题适合用动态规划来解决呢?这部分理论总结为“一个模型三个特征”。

首先,什么是“一个模型”?它指的是动态规划适合解决的问题的模型。为“多阶段决策最优解模型”。

一般是用动态规划来解决最优问题。而解决问题的过程,需要经历多个决策阶段。每个决策阶段都对应着一组状态。然后寻找一组决策序列,经过这组决策序列,能够产生最终期望求解的最优值。

什么是“三个特征”?它们分别是最优子结构无后效性重复子问题

1. 最优子结构

最优子结构指的是,问题的最优解包含子问题的最优解。反过来说就是,可以通过子问题的最优解,推导出问题的最优解。如果把最优子结构,对应到前面定义的动态规划问题模型上,那也可以理解为,后面阶段的状态可以通过前面阶段的状态推导出来。

2. 无后效性

无后效性有两层含义,第一层含义是,在推导后面阶段的状态的时候,只关心前面阶段的状态值,不关心这个状态是怎么一步一步推导出来的。第二层含义是,某阶段状态一旦确定,就不受之后阶段的决策影响。无后效性是一个非常“宽松”的要求。只要满足前面提到的动态规划问题模型,其实基本上都会满足无后效性。

3. 重复子问题

如果用一句话概括一下,那就是,不同的决策序列,到达某个相同的阶段时,可能会产生重复的状态。

“一个模型三个特征”实例剖析

假设我们有一个 n 乘以 n 的矩阵 w[n] [n]。矩阵存储的都是正整数。棋子起始位置在左上角,终止位置在右下角。将棋子从左上角移动到右下角。每次只能向右或者向下移动一位。从左上角到右下角,会有很多不同的路径可以走。把每条路径经过的数字加起来看作路径的长度。那从左上角移动到右下角的最短路径长度是多少呢?

从 (0, 0) 走到 (n-1, n-1),总共要走 2 * (n-1) 步,也就对应着 2*(n-1) 个阶段。每个阶段都有向右走或者向下走两种决策,并且每个阶段都会对应一个状态集合。

把状态定义为 min_dist(i, j),其中 i 表示行,j 表示列。min_dist 表达式的值表示从 (0, 0) 到达 (i, j) 的最短路径长度。所以,这个问题是一个多阶段决策最优解问题,符合动态规划的模型。

可以用回溯算法来解决这个问题。递归树中有重复的节点。重复的节点表示,从左上角到节点对应的位置,有多种路线,这也能说明这个问题中存在重复子问题。

如果我们走到 (i, j) 这个位置,只能通过 (i-1, j),(i, j-1) 这两个位置移动过来,也就是说,想要计算 (i, j) 位置对应的状态,只需要关心 (i-1, j),(i, j-1) 两个位置对应的状态,并不关心棋子是通过什么样的路线到达这两个位置的。而且,仅仅允许往下和往右移动,不允许后退,所以,前面阶段的状态确定之后,不会被后面阶段的决策所改变,所以,这个问题符合“无后效性”这一特征。

刚刚定义状态的时候,把从起始位置 (0, 0) 到 (i, j) 的最小路径,记作 min_dist(i, j)。因为只能往右或往下移动,所以,只有可能从 (i, j-1) 或者 (i-1, j) 两个位置到达 (i, j)。也就是说,到达 (i, j) 的最短路径要么经过 (i, j-1),要么经过 (i-1, j),而且到达 (i, j) 的最短路径肯定包含到达这两个位置的最短路径之一。换句话说就是,min_dist(i, j) 可以通过 min_dist(i, j-1) 和 min_dist(i-1, j) 两个状态推导出来。这就说明,这个问题符合“最优子结构”。

min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))

两种动态规划解题思路总结

解决动态规划问题,一般有两种思路,状态转移表法和状态转移方程法。

1. 状态转移表法

一般能用动态规划解决的问题,都可以使用回溯算法的暴力搜索解决。所以,当拿到问题的时候,可以先用简单的回溯算法解决,然后定义状态,每个状态表示一个节点,然后对应画出递归树。从递归树中,很容易可以看出来,是否存在重复子问题,以及重复子问题是如何产生的。以此来寻找规律,看是否能用动态规划解决。

找到重复子问题之后,接下来,有两种处理思路,第一种是直接用回溯加“备忘录”的方法,来避免重复子问题。从执行效率上来讲,这跟动态规划的解决思路没有差别。第二种是使用动态规划的解决方法,状态转移表法

先画出一个状态表。状态表一般都是二维的,所以可以把它想象成二维数组。其中,每个状态包含三个变量,行、列、数组值。根据决策的先后过程,从前往后,根据递推关系,分阶段填充状态表中的每个状态。最后,将这个递推填表的过程,翻译成代码,就是动态规划代码了。

如何套用这个状态转移表法,来解决之前那个矩阵最短路径的问题?

从起点到终点,有很多种不同的走法。可以穷举所有走法,然后对比找出一个最短走法。可以用回溯算法这个比较有规律的穷举算法。

private int minDist = Integer.MAX_VALUE; // 全局变量或者成员变量
// 调用方式:minDistBacktracing(0, 0, 0, w, n);
public void minDistBT(int i, int j, int dist, int[][] w, int n) {
// 到达了 n-1, n-1 这个位置了,这里看着有点奇怪哈,你自己举个例子看下
if (i == n -1&& j == n-1) {
if (dist < minDist) minDist = dist;
return;
}
if (i < n-1) { // 往下走,更新 i=i+1, j=j
minDistBT(i + 1, j, dist+w[i][j], w, n);
}
if (j < n-1) { // 往右走,更新 i=i, j=j+1
minDistBT(i, j+1, dist+w[i][j], w, n);
}
}
​

在递归树中,一个状态包含三个变量 (i, j, dist),其中 i,j 分别表示行和列,dist 表示从起点到达 (i, j) 的路径长度。尽管 (i, j, dist) 不存在重复的,但是 (i, j) 重复的有很多。对于 (i, j) 重复的节点,只需要选择 dist 最小的节点,继续递归求解,其他节点就可以舍弃了。

既然存在重复子问题,就可以尝试看下,是否可以用动态规划来解决呢?

按照决策过程,通过不断状态递推演进,将状态表填好。为了方便代码实现,按行来进行依次填充。

public int minDistDP(int[][] matrix, int n) {
int[][] states = new int[n][n];
int sum = 0;
for (int j = 0; j < n; ++j) { // 初始化 states 的第一行数据
sum += matrix[0][j];
states[0][j] = sum;
}
sum = 0;
for (int i = 0; i < n; ++i) { // 初始化 states 的第一列数据
sum += matrix[i][0];
states[i][0] = sum;
}
for (int i = 1; i < n; ++i) {
for (int j = 1; j < n; ++j) {
states[i][j] = 
matrix[i][j] + Math.min(states[i][j-1], states[i-1][j]);
}
}
return states[n-1][n-1];
}
​

2. 状态转移方程法

状态转移方程法有点类似递归的解题思路。需要分析某个问题如何通过子问题来递归求解,也就是所谓的最优子结构。根据最优子结构,写出递归公式,即所谓的状态转移方程。有了状态转移方程,代码实现就非常简单了。一般情况下,有两种代码实现方法,一种是递归加“备忘录”,另一种是迭代递推

min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))

状态转移方程是解决动态规划的关键。

private int[][] matrix = 
{{1,3,5,9}, {2,1,3,4},{5,2,6,7},{6,8,4,3}};
private int n = 4;
private int[][] mem = new int[4][4];
public int minDist(int i, int j) { // 调用 minDist(n-1, n-1);
if (i == 0 && j == 0) return matrix[0][0];
if (mem[i][j] > 0) return mem[i][j];
int minLeft = Integer.MAX_VALUE;
if (j-1 >= 0) {
minLeft = minDist(i, j-1);
}
int minUp = Integer.MAX_VALUE;
if (i-1 >= 0) {
minUp = minDist(i-1, j);
}
int currMinDist = matrix[i][j] + Math.min(minLeft, minUp);
mem[i][j] = currMinDist;
return currMinDist;
}                                          
​

四种算法思想比较分析

如果将这四种算法思想分一下类,那贪心、回溯、动态规划可以归为一类,而分治单独可以作为一类,因为它跟其他三个都不大一样。前三个算法解决问题的模型,都可以抽象成多阶段决策最优解模型,而分治算法解决的问题尽管大部分也是最优解问题,但是,大部分都不能抽象成多阶段决策模型。

基本上能用的动态规划、贪心解决的问题,都可以用回溯算法解决。回溯算法相当于穷举搜索。穷举所有的情况,然后对比得到最优解。不过,回溯算法的时间复杂度非常高,是指数级别的,只能用来解决小规模数据的问题。对于大规模数据的问题,用回溯算法解决的执行效率就很低了。

尽管动态规划比回溯算法高效,但是,并不是所有问题,都可以用动态规划来解决。能用动态规划解决的问题,需要满足三个特征,最优子结构、无后效性和重复子问题。在重复子问题这一点上,动态规划和分治算法的区分非常明显。分治算法要求分割成的子问题,不能有重复子问题,而动态规划正好相反,动态规划之所以高效,就是因为回溯算法实现中存在大量的重复子问题。

贪心算法实际上是动态规划算法的一种特殊情况。它解决问题起来更加高效,代码实现也更加简洁。不过,它可以解决的问题也更加有限。它能解决的问题需要满足三个条件,最优子结构、无后效性和贪心选择性(这里我们不怎么强调重复子问题)。

其中,最优子结构、无后效性跟动态规划中的无异。“贪心选择性”的意思是,通过局部最优的选择,能产生全局的最优选择。每一个阶段,都选择当前看起来最优的决策,所有阶段的决策完成之后,最终由这些局部最优解构成全局最优解。

什么样的问题适合用动态规划解决。可以总结概括为“一个模型三个特征”。其中,“一个模型”指的是,问题可以抽象成分阶段决策最优解模型。“三个特征”指的是最优子节、无后效性和重复子问题。

两种动态规划的解题思路。它们分别是状态转移表法和状态转移方程法。其中,状态转移表法解题思路大致可以概括为,回溯算法实现 - 定义状态 - 画递归树 - 找重复子问题 - 画状态转移表 - 根据递推关系填表 - 将填表过程翻译成代码。状态转移方程法的大致思路可以概括为,找最优子结构 - 写状态转移方程 - 将状态转移方程翻译成代码

42 | 动态规划实战:如何实现搜索引擎中的拼写纠错功能?

如何量化两个字符串的相似度?

如何量化两个字符串之间的相似程度呢?有一个非常著名的量化方法,那就是编辑距离。

编辑距离指的就是,将一个字符串转化成另一个字符串,需要的最少编辑操作次数(比如增加一个字符、删除一个字符、替换一个字符)。编辑距离越大,说明两个字符串的相似程度越小;相反,编辑距离就越小,说明两个字符串的相似程度越大。对于两个完全相同的字符串来说,编辑距离就是 0。

根据所包含的编辑操作种类的不同,编辑距离有多种不同的计算方式,比较著名的有莱文斯坦距离最长公共子串长度。其中,莱文斯坦距离允许增加、删除、替换字符这三个编辑操作,最长公共子串长度只允许增加、删除字符这两个编辑操作。

而且,莱文斯坦距离和最长公共子串长度,从两个截然相反的角度,分析字符串的相似程度。莱文斯坦距离的大小,表示两个字符串差异的大小;而最长公共子串的大小,表示两个字符串相似程度的大小。

关于这两个计算方法,例如字符串 mitcmu 和 mtacnu 的莱文斯坦距离是 3,最长公共子串长度是 4。

如何编程计算莱文斯坦距离?

这个问题是求把一个字符串变成另一个字符串,需要的最少编辑次数。整个求解过程,涉及多个决策阶段,需要依次考察一个字符串中的每个字符,跟另一个字符串中的字符是否匹配,匹配的话如何处理,不匹配的话又如何处理。所以,这个问题符合多阶段决策最优解模型

用最简单的回溯算法,该如何来解决。

回溯是一个递归处理的过程。如果 a[i] 与 b[j] 匹配,递归考察 a[i+1] 和 b[j+1]。如果 a[i] 与 b[j] 不匹配,那我们有多种处理方式可选:

  • 可以删除 a[i],然后递归考察 a[i+1] 和 b[j];

  • 可以删除 b[j],然后递归考察 a[i] 和 b[j+1];

  • 可以在 a[i] 前面添加一个跟 b[j] 同的字符,然后递归考察 a[i] 和 b[j+1];

  • 可以在 b[j] 前面添加一个跟 a[i] 相同的字符,然后递归考察 a[i+1] 和 b[j];

  • 可以将 a[i] 替换成 b[j],或者将 b[j] 替换成 a[i],然后递归考察 a[i+1] 和 b[j+1]。

private char[] a = "mitcmu".toCharArray();
private char[] b = "mtacnu".toCharArray();
private int n = 6;
private int m = 6;
private int minDist = Integer.MAX_VALUE; // 存储结果
// 调用方式 lwstBT(0, 0, 0);
public lwstBT(int i, int j, int edist) {
if (i == n || j == m) {
if (i < n) edist += (n-i);
if (j < m) edist += (m - j);
if (edist < minDist) minDist = edist;
return;
}
if (a[i] == b[j]) { // 两个字符匹配
lwstBT(i+1, j+1, edist);
} else { // 两个字符不匹配
lwstBT(i + 1, j, edist + 1); // 删除 a[i] 或者 b[j] 前添加一个字符
lwstBT(i, j + 1, edist + 1); // 删除 b[j] 或者 a[i] 前添加一个字符
lwstBT(i + 1, j + 1, edist + 1); // 将 a[i] 和 b[j] 替换为相同字符
}
}

根据回溯算法的代码实现,可以画出递归树,看是否存在重复子问题。如果存在重复子问题,那就可以考虑能否用动态规划来解决;如果不存在重复子问题,那回溯就是最好的解决方法。

 

在递归树中,每个节点代表一个状态,状态包含三个变量 (i, j, edist),其中,edist 表示处理到 a[i] 和 b[j] 时,已经执行的编辑操作的次数。

在递归树中,(i, j) 两个变量重复的节点很多,比如 (3, 2) 和 (2, 3)。对于 (i, j) 相同的节点,我们只需要保留 edist 最小的,继续递归处理就可以了,剩下的节点都可以舍弃。所以,状态就从 (i, j, edist) 变成了 (i, j, min_edist),其中 min_edist 表示处理到 a[i] 和 b[j],已经执行的最少编辑次数。

状态 (i, j) 可能从 (i-1, j),(i, j-1),(i-1, j-1) 三个状态中的任意一个转移过来。

如果:a[i]!=b[j],那么:min_edist(i, j) 就等于:
min(min_edist(i-1,j)+1, min_edist(i,j-1)+1, min_edist(i-1,j-1)+1)
如果:a[i]==b[j],那么:min_edist(i, j) 就等于:
min(min_edist(i-1,j)+1, min_edist(i,j-1)+1,min_edist(i-1,j-1))
其中,min 表示求三数中的最小值。     
public int lwstDP(char[] a, int n, char[] b, int m) {
int[][] minDist = new int[n][m];
for (int j = 0; j < m; ++j) { // 初始化第 0 行:a[0..0] 与 b[0..j] 的编辑距离
if (a[0] == b[j]) minDist[0][j] = j;
else if (j != 0) minDist[0][j] = minDist[0][j-1]+1;
else minDist[0][j] = 1;
}
for (int i = 0; i < n; ++i) { // 初始化第 0 列:a[0..i] 与 b[0..0] 的编辑距离
if (a[i] == b[0]) minDist[i][0] = i;
else if (i != 0) minDist[i][0] = minDist[i-1][0]+1;
else minDist[i][0] = 1;
}
for (int i = 1; i < n; ++i) { // 按行填表
for (int j = 1; j < m; ++j) {
if (a[i] == b[j]) minDist[i][j] = min(
minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]);
else minDist[i][j] = min(
minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]+1);
}
}
return minDist[n-1][m-1];
}
private int min(int x, int y, int z) {
int minv = Integer.MAX_VALUE;
if (x < minv) minv = x;
if (y < minv) minv = y;
if (z < minv) minv = z;
return minv;
}
​

如何编程计算最长公共子串长度?

每个状态还是包括三个变量 (i, j, max_lcs),max_lcs 表示 a[0…i] 和 b[0…j] 的最长公共子串长度。那 (i, j) 这个状态都是由哪些状态转移过来的呢?

先来看回溯的处理思路。从 a[0] 和 b[0] 开始,依次考察两个字符串中的字符是否匹配。

  • 如果 a[i] 与 b[j] 互相匹配,将最大公共子串长度加一,并且继续考察 a[i+1] 和 b[j+1]。

  • 如果 a[i] 与 b[j] 不匹配,最长公共子串长度不变,这个时候,有两个不同的决策路线:

  • 删除 a[i],或者在 b[j] 前面加上一个字符 a[i],然后继续考察 a[i+1] 和 b[j];

  • 删除 b[j],或者在 a[i] 前面加上一个字符 b[j],然后继续考察 a[i] 和 b[j+1]。

反过来也就是说,如果我们要求 a[0…i] 和 b[0…j] 的最长公共长度 max_lcs(i, j),我们只有可能通过下面三个状态转移过来:

  • (i-1, j-1, max_lcs),其中 max_lcs 表示 a[0…i-1] 和 b[0…j-1] 的最长公共子串长度;

  • (i-1, j, max_lcs),其中 max_lcs 表示 a[0…i-1] 和 b[0…j] 的最长公共子串长度;

  • (i, j-1, max_lcs),其中 max_lcs 表示 a[0…i] 和 b[0…j-1] 的最长公共子串长度。

如果把这个转移过程,用状态转移方程写出来,就是下面这个样子:

如果:a[i]==b[j],那么:max_lcs(i, j) 就等于:
max(max_lcs(i-1,j-1)+1, max_lcs(i-1, j), max_lcs(i, j-1));
如果:a[i]!=b[j],那么:max_lcs(i, j) 就等于:
max(max_lcs(i-1,j-1), max_lcs(i-1, j), max_lcs(i, j-1));
其中 max 表示求三数中的最大值。
public int lcs(char[] a, int n, char[] b, int m) {
int[][] maxlcs = new int[n][m];
for (int j = 0; j < m; ++j) {// 初始化第 0 行:a[0..0] 与 b[0..j] 的 maxlcs
if (a[0] == b[j]) maxlcs[0][j] = 1;
else if (j != 0) maxlcs[0][j] = maxlcs[0][j-1];
else maxlcs[0][j] = 0;
}
for (int i = 0; i < n; ++i) {// 初始化第 0 列:a[0..i] 与 b[0..0] 的 maxlcs
if (a[i] == b[0]) maxlcs[i][0] = 1;
else if (i != 0) maxlcs[i][0] = maxlcs[i-1][0];
else maxlcs[i][0] = 0;
}
for (int i = 1; i < n; ++i) { // 填表
for (int j = 1; j < m; ++j) {
if (a[i] == b[j]) maxlcs[i][j] = max(
maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]+1);
else maxlcs[i][j] = max(
maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]);
}
}
return maxlcs[n-1][m-1];
}
private int max(int x, int y, int z) {
int maxv = Integer.MIN_VALUE;
if (x > maxv) maxv = x;
if (y > maxv) maxv = y;
if (z > maxv) maxv = z;
return maxv;
}
​

利用 Trie 树,可以实现搜索引擎的关键词提示功能,这样可以节省用户输入搜索关键词的时间。

当你在搜索框中,一不小心输错单词时,搜索引擎会非常智能地检测出你的拼写错误,并且用对应的正确单词来进行搜索。作为一名软件开发工程师,你是否想过,这个功能是怎么实现的呢?

当用户在搜索框内,输入一个拼写错误的单词时,就拿这个单词跟词库中的单词一一进行比较,计算编辑距离,将编辑距离最小的单词,作为纠正之后的单词,提示给用户。

这就是拼写纠错最基本的原理。不过,真正用于商用的搜索引擎,拼写纠错功能显然不会就这么简单。一方面,单纯利用编辑距离来纠错,效果并不一定好;另一方面,词库中的数据量可能很大,搜索引擎每天要支持海量的搜索,所以对纠错的性能要求很高。

针对纠错效果不好的问题,有很多种优化思路。

  • 并不仅仅取出编辑距离最小的那个单词,而是取出编辑距离最小的 TOP 10,然后根据其他参数,决策选择哪个单词作为拼写纠错单词。比如使用搜索热门程度来决定哪个单词作为拼写纠错单词。

  • 还可以用多种编辑距离计算方法,比如今天讲到的两种,然后分别编辑距离最小的 TOP 10,然后求交集,用交集的结果,再继续优化处理。

  • 还可以通过统计用户的搜索日志,得到最常被拼错的单词列表,以及对应的拼写正确的单词。搜索引擎在拼写纠错的时候,首先在这个最常被拼错单词列表中查找。如果一旦找到,直接返回对应的正确的单词。这样纠错的效果非常好。

  • 还有更加高级一点的做法,引入个性化因素。针对每个用户,维护这个用户特有的搜索喜好,也就是常用的搜索关键词。当用户输入错误的单词的时候,我们首先在这个用户常用的搜索关键词中,计算编辑距离,查找编辑距离最小的单词。

针对纠错性能方面,也有相应的优化方式。两种分治的优化思路。

  • 如果纠错功能的 TPS 不高,可以部署多台机器,每台机器运行一个独立的纠错功能。当有一个纠错请求的时候,通过负载均衡,分配到其中一台机器,来计算编辑距离,得到纠错单词。

  • 如果纠错系统的响应时间太长,也就是每个纠错请求处理时间过长,可以将纠错的词库,分割到很多台机器。当有一个纠错请求的时候,就将这个拼写错误的单词,同时发送到这多台机器,让多台机器并行处理,分别得到编辑距离最小的单词,然后再比对合并,最终决定出一个最优的纠错单词。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值