目录
(8)给定一个二叉树, 找到该树中两个指定节点的最近公共祖先
一、树型结构
(1)树的定义
a.树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,(根朝上,而叶朝下)它具有以下的特点:
b.有一个特殊的结点,称为根结点,根结点没有前驱结点。除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合Ti (1 <= i <=m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
c.树是递归定义的。树形结构中,子树之间不能有交集,否则就不是树形结构。
(2)树的基本术语
结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
根结点:一棵树中,没有双亲结点的结点;如上图:A
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等节点为分支结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>=0)棵互不相交的树组成的集合称为森林
(3)树的存储结构
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法、孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。
相关博客详解:树的三种表示法:双亲表示法、孩子表示法、孩子兄弟表示法_Huberyxiao的博客-CSDN博客_树的双亲表示法
二、二叉树
(1)二叉树的定义
一棵二叉树是结点的一个有限结合,该集合需满足两个条件:
a.或者为空
b.或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成
a. 二叉树不存在度大于2的结点
b. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
任意的二叉树都是由以下几种情况复合而成的:
(2)两种特殊二叉树
1.满二叉树
一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2.完全二叉树
完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
(3)二叉树的性质
1.公式
a. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 (i>0)个结点
b. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是 (k>=0)
c. 对任何一棵二叉树, 如果其叶结点个数为 , 度为2的非叶结点个数为 ,则有
d. 具有n个结点的完全二叉树的深度 上取整
e. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
若i>0,双亲序号:;i=0,i为根结点编号,无双亲结点
若<n,左孩子序号:,否则无左孩子
若<n,右孩子序号:,否则无右孩子
2.习题
1. 某满二叉树中共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( B)
A 不存在这样的二叉树
B 200
C 198
D 199
2.在具有 2n 个结点的完全二叉树中,叶子结点个数为(A)
A n
B n+1
C n-1
D n/2
3.一个具有767个节点的完全二叉树,其叶子节点个数为(B)
A 383
B 384
C 385
D 386
与第三题同理
4.一棵完全二叉树的节点数为531个,那么这棵树的高度为(B )
A 11
B 10
C 8
D 12
(4)二叉树的存储
二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:
// 孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
//孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点
}
以下代码都是使用如下结点定义:
public class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int val) {
this.val = val; // 这个结点中的值是 val
this.left = null; // 这个结点的左孩子是 null:不存在 —— 左子树是空树
this.right = null; // 这个结点的有孩子是 null;不存在 —— 右子树是空树
}
}
在下面代码中除了利用递归思想,还有另一种方法用到队列。代码实现层面,需要把结点和层数打包在一起,作为队列的元素 。代码中如何体现打包呢?使用一个对象。
static class TreeNodeWithLevel {
public TreeNode node;
public int level;
public TreeNodeWithLevel(TreeNode node, int level) {
this.node = node;
this.level = level;
}
@Override
public String toString() {
return String.format("%s-%d", node.toString(), level);//重写toString方法,使打印明确。
}
}
(5)二叉树的基本操作
遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
NLR:前序遍历(Preorder Traversal 又先序遍历)——访问根结点--->根的左子树--->根的右子树。
LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点
前序遍历结果:1 2 3 4 5 6
中序遍历结果:3 2 1 5 4 6
后序遍历结果:3 1 5 6 4 1
二叉树的遍历分为深度遍历、广度遍历。
深度遍历:前中后序遍历,需要用到栈。隐式用到栈:递归方法。显示用到栈:非递归方法。
广度遍历:层序遍历,需要用到队列。
1.二叉树的遍历之前序遍历
递归:
public static void preorder(TreeNode root) {
if (root == null) {
return;
}
System.out.println(root.val);
preorder(root.left);
preorder(root.right);
}
非递归:
public static void preorder非递归(TreeNode root) {
Deque<TreeNode> stack = new LinkedList<>(); // 使用 Deque 作为栈来使用
TreeNode cur = root;
// 循环停止的条件 cur == null && stack.isEmpty()
// cur == null 的时候,应该处理 栈 中还有结点的右子树了
// 但 栈 也是 empty,说明所有的右子树都处理
// 所以可以停止了
// 反过来,循环继续的条件
// !(cur == null && stack.isEmpty())
// 化简 cur != null || stack.isEmpty() == false
while (cur != null || stack.isEmpty() == false) {
// 一路朝左走,不管右子树,但需要回溯,所以记录在栈中
while (cur != null) {
System.out.println(cur.toString());
stack.push(cur);
cur = cur.left;
}
// 依次从栈中弹出元素,处理剩下没走的右子树
TreeNode top = stack.pop();
// 处理右子树
cur = top.right;
}
}
2.二叉树的遍历之中序遍历
递归:
public static void inorder(TreeNode root) {
if (root == null) {
return;
}
inorder(root.left);
System.out.println(root.val);
inorder(root.right);
}
非递归:
// 中序遍历是第二次经过时打印(从左子树回来时打印) -> 从栈里弹出来的时候打印
public static void inorder非递归(TreeNode root) {
Deque<TreeNode> stack = new LinkedList<>(); // 使用 Deque 作为栈来使用
TreeNode cur = root;
while (cur != null || stack.isEmpty() == false) {
while (cur != null) {
// 第一次经过某结点
stack.push(cur);
cur = cur.left;
}
// 依次从栈中弹出元素,处理剩下没走的右子树
TreeNode top = stack.pop();
System.out.println(top); // 第二次经过某结点
// 处理右子树
cur = top.right;
}
}
3.二叉树的遍历之后序遍历
递归:
public static void postorder(TreeNode root) {
if (root == null) {
return;
}
postorder(root.left);
postorder(root.right);
System.out.println(root.val);
}
非递归:
public static void postorder非递归(TreeNode root) {
Deque<TreeNode> stack = new LinkedList<>(); // 使用 Deque 作为栈来使用
TreeNode cur = root;
TreeNode last = null; // 记录上次后序遍历经过的结点
while (cur != null || stack.isEmpty() == false) {
while (cur != null) {
// 第一次经过某结点
stack.push(cur);
cur = cur.left;
}
// 查看栈顶元素
TreeNode top = stack.peek();
if (top.right == null) {
// 右子树为空的情况下,没必要走第三次
// 换言之:第二次可以看作第三次
System.out.println(top); // 后序
last = top; // last 记录上一次被后序遍历的结点
stack.pop();
} else if (top.right == last) {
// 上一次后序遍历的结点是 top 的右孩子
// 说明是从 top 的右边来到 top 的
// 也就是第三次经过 top 结点
System.out.println(top); // 后序
last = top; // last 记录上一次被后序遍历的结点
stack.pop();
} else {
// 说明是从 top 的左边到的 top
// 第二次经过 top 结点
// 不后序遍历,而是继续走 top 的右子树
// 处理右子树
cur = top.right;
}
}
}
4.二叉树的遍历之层序遍历
public static void levelorder(TreeNode root) {
if (root == null) {
return;
}
// 使用队列而不是栈,没有递归
// 因为队列中取出元素后需要把结点的左右孩子继续放进去,所以这里队列的元素类型是 TreeNode
Queue<TreeNode> queue = new LinkedList<>();
// 首先把根节点放入队列中,此时此刻的层序遍历不会把 null 放到队列中
// 所以,所以需要考虑 root == null 的情况
queue.offer(root);
// 开启循环,直到 queue.isEmpty() == true
while (queue.isEmpty() == false) {
// 1. 取出队首元素
TreeNode node = queue.poll();
// 断言 node != null
// 2. 打印结点的值
System.out.println(node.toString());
// 3. 依次从左到右把孩子放入队列中,不放 null 进去
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
}
层序遍历打印结点和层数:
public static void levelOrderButLevel(TreeNode root) {
if (root == null) {
return;
}
Queue<TreeNodeWithLevel> queue = new LinkedList<>();//见二叉树的存储
queue.offer(new TreeNodeWithLevel(root, 1));
while (!queue.isEmpty()) {
TreeNodeWithLevel tnwl = queue.poll();
TreeNode node = tnwl.node;
int level = tnwl.level;
System.out.println(tnwl);
if (node.left != null) {
queue.offer(new TreeNodeWithLevel(node.left, level + 1));
}
if (node.right != null) {
queue.offer(new TreeNodeWithLevel(node.right, level + 1));
}
}
}
public static void levelOrderButLevel2(TreeNode root) {
if (root == null) {
return;
}
Queue<TreeNode> nodeQueue = new LinkedList<>();
Queue<Integer> levelQueue = new LinkedList<>();
nodeQueue.offer(root);
levelQueue.offer(1);
// 代码一定维护着 nodeQueue 和 levelQueue 的元素个数一定是一样的
// 所以判断,只需要判断其中一个队列是 empty 即可
while (!nodeQueue.isEmpty()) {
TreeNode node = nodeQueue.poll();
int level = levelQueue.poll();
System.out.println(node + "-" + level);
if (node.left != null) {
nodeQueue.offer(node.left);
levelQueue.offer(level + 1);
}
if (node.right != null) {
nodeQueue.offer(node.right);
levelQueue.offer(level + 1);
}
}
}
下面是层序遍历的升级版:二叉树的层序遍历
public static List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> ans = new ArrayList<>();
if (root == null) {
return ans;
}
// 定义两个队列
Queue<TreeNode> nodeQueue = new LinkedList<>();
Queue<Integer> levelQueue = new LinkedList<>();
// 根结点记为第 0 层
// 把根结点和它对应的层数放入队列中
nodeQueue.offer(root);
levelQueue.offer(0);
while (!nodeQueue.isEmpty()) {
TreeNode node = nodeQueue.poll();
int level = levelQueue.poll();
// 每个结点的 level 就刚好对应 ans 中的下标,根据这个下标,就可以获取到对应的 List<Integer>,这层的 List
List<Integer> levelList = ans.get(level);
// 将元素放入对应的 levelList 中(尾插,保证顺序不变)
levelList.add(node.val);
// 层序遍历的模板代码
if (node.left != null) {
nodeQueue.offer(node.left);
levelQueue.offer(level + 1);
}
if (node.right != null) {
nodeQueue.offer(node.right);
levelQueue.offer(level + 1);
}
}
return ans;
}
5. 统计二叉树中结点个数
递归:
public static int nodeSize;
/**
* 获取树中节点的个数:遍历思路
*/
void size(TreeNode root) {
if(root==null){
return ;
}
nodeSize++;
size(root.left);
size(root.right);
}
/**
* 获取节点的个数:子问题的思路
*
* @param root
* @return
*/
int size2(TreeNode root) {
if(root==null) {
return 0;
}
return size2(root.left)+size2(root.right)+1;
}
队列:
public static int sizeOf(TreeNode root) {
if (root == null) {
// 空树的结点个数
return 0;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int size = 0;
// 每个结点都会被放入队列中
// 都会被取出来一次
// 有多少个结点,这个循环就会持续多少次
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
size++; // 打印替换成 size++
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
return size;
}
6.统计二叉树中叶子节点的个数
递归:
/*
获取叶子节点的个数:遍历思路
*/
public static int leafSize = 0;
void getLeafNodeCount1(TreeNode root) {
if(root==null){
return;
}
if(root.left==null&&root.right==null){
leafSize++;
}
getLeafNodeCount1(root.left);
getLeafNodeCount1(root.right);
}
/*
获取叶子节点的个数:子问题
*/
int getLeafNodeCount2(TreeNode root) {
if (root==null){
return 0;
}
if(root.left==null&&root.right==null){
return 1;
}
return getLeafNodeCount2(root.left)+getLeafNodeCount2(root.right);
}
队列:
public static int leafSizeOf(TreeNode root) {
if (root == null) {
// 空树的叶子结点个数
return 0;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int size = 0;
// 每个结点都会被放入队列中
// 都会被取出来一次
// 有多少个结点,这个循环就会持续多少次
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
// 只有叶子结点时,才 size++
if (node.left == null && node.right == null) {
size++; // 打印替换成 size++
}
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
return size;
}
7.统计二叉树的第K层上的结点个数
递归:
/*
获取第K层节点的个数
*/
int getKLevelNodeCount(TreeNode root, int k) {
if(root==null){
return 0;
}
if(k==1){
return 1;
}
return getKLevelNodeCount(root.left,k-1)+getKLevelNodeCount(root.right, k-1);
}
队列:
public static int getKLevelSize(TreeNode root, int k) {
if (root == null) {
return 0;
}
Queue<TreeNodeWithLevel> queue = new LinkedList<>();
queue.offer(new TreeNodeWithLevel(root, 1));
int size = 0;
while (!queue.isEmpty()) {
TreeNodeWithLevel tnwl = queue.poll();
TreeNode node = tnwl.node;
int level = tnwl.level;
if (level == k) {
// 说明是第 k 层了
size++;
}
if (node.left != null) {
queue.offer(new TreeNodeWithLevel(node.left, level + 1));
}
if (node.right != null) {
queue.offer(new TreeNodeWithLevel(node.right, level + 1));
}
}
return size;
}
8.求一棵二叉树的高度
递归:
/*
获取二叉树的高度
时间复杂度:O(N)
*/
int getHeight(TreeNode root) {
if(root==null){
return 0;
}
int leftHeight=getHeight(root.left);
int rightHeight=getHeight(root.right);
return leftHeight>rightHeight?leftHeight+1:rightHeight+1;
}
队列:
public static int heightOf(TreeNode root) {
if (root == null) {
return 0;
}
Queue<TreeNodeWithLevel> queue = new LinkedList<>();
queue.offer(new TreeNodeWithLevel(root, 1));
int height = -1;
while (!queue.isEmpty()) {
TreeNodeWithLevel tnwl = queue.poll();
TreeNode node = tnwl.node;
int level = tnwl.level;
height = level; //后边的值覆盖前面的值
if (node.left != null) {
queue.offer(new TreeNodeWithLevel(node.left, level + 1));
}
if (node.right != null) {
queue.offer(new TreeNodeWithLevel(node.right, level + 1));
}
}
// height 就是最后一个 level,也就是最大的 level
return height;
}
9.给定一个值,在二叉树中进行查找,返回包含这个值的结点
// 检测值为value的元素是否存在
TreeNode find(TreeNode root, char val) {
if(root==null){
return null;
}
if(root.val==val){
return root;
}
TreeNode left=find(root.left,val);
if(left!=null){
return left;
}
TreeNode right=find(root.right, val);
if(right!=null){
return right;
}
return null;
}
10.判断是否是完全二叉树
public static boolean isCompleteTree(TreeNode root) {
if (root == null) {
// 空树是一种完全二叉树
return true;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
// 循环停止的条件,从队列中取出的元素是 null
while (true) {
TreeNode node = queue.poll();
if (node == null) {
break;
}
queue.offer(node.left);
queue.offer(node.right);
}
// 检查队列中剩余的元素是否存在 != null 的情况
// 存在 != null:非完全二叉树
// 任取 == null:完全二叉树
// 所以,遍历队列中剩余的元素
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
if (node != null) {
// 存在 != null:
return false;
}
}
// 任取 == null:是完全二叉树
return true;
}
三、二叉树oj题
(1)检查两颗树是否相同
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p==null&&q==null){
return true;
}
if(p==null||q==null){
return false;
}
if(p.val!=q.val){
return false;
}else{
boolean r=isSameTree(p.left,q.left);
if(r==false){
return false;
}else{
r=isSameTree(p.right,q.right);
if(r==false){
return false;
}else{
return true;
}
}
}
}
}
(2)另一颗树的子树
class Solution {
public boolean isSubtree(TreeNode root, TreeNode subRoot) {
if(subRoot==null){
return true;
}
if(root==null){
return false;
}
if(isSame(root,subRoot)){
return true;
}
return isSubtree(root.left,subRoot)||isSubtree(root.right,subRoot);
}
public boolean isSame(TreeNode root, TreeNode subRoot) {
if(root==null&&subRoot==null){
return true;
}
if(root==null||subRoot==null){
return false;
}
return root.val==subRoot.val
&&isSame(root.left,subRoot.left)
&&isSame(root.right,subRoot.right);
}
}
(3)翻转二叉树
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root==null){
return null;
}
invertTree(root.left);
TreeNode tmp=root.left;
root.left=root.right;
root.right=tmp;
invertTree(root.right);
return root;
}
}
(4)判断一颗二叉树是否是平衡二叉树
class Solution {
public boolean isBalanced(TreeNode root) {
if(root==null){
return true;
}
if(!isBalanced(root.left)){
return false;
}
if(!isBalanced(root.right)){
return false;
}
if(Math.abs(height(root.left)-height(root.right))>1){
return false;
}
return true;
}
public int height(TreeNode root) {
if(root==null){
return 0;
}
return height(root.left)>height(root.right)?height(root.left)+1:height(root.right)+1;
}
}
(5)对称二叉树
class Solution {
public boolean isSymmetric(TreeNode root) {
if(root==null){
return true;
}
return isSame(root.left,root.right);
}
public boolean isSame(TreeNode p,TreeNode q) {
if(p==null&&q==null){
return true;
}
if(p==null||q==null){
return false;
}
return p.val==q.val&&isSame(p.left,q.right)&&isSame(p.right,q.left);
}
}
(6)二叉树的构建及遍历
import java.util.*;
import java.lang.*;
class TreeNode{
char val;
TreeNode left;
TreeNode right;
TreeNode(char val){
this.val=val;
}
}
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
while(in.hasNext()){
String str=in.nextLine();
List <Character>preorderList=toList(str);
TreeNode node= createTree(preorderList);
inorder(node);
}
}
public static List <Character> toList(String str) {
List <Character> list=new LinkedList<>();
for(int i=0;i<str.length();i++){
list.add(str.charAt(i));
}
return list;
}
public static TreeNode createTree(List <Character> proderList) {
if(proderList.size()==0){
return null;
}
char rootval =proderList.remove(0);
if(rootval=='#'){
return null;
}
TreeNode root =new TreeNode(rootval);
TreeNode left = createTree(proderList);
TreeNode right = createTree(proderList);
root.left=left;
root.right=right;
return root;
}
public static void inorder(TreeNode root) {
if(root==null){
return;
}
inorder(root.left);
System.out.print(root.val+" ");
inorder(root.right);
}
}
(7)二叉树的分层遍历
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> ans=new LinkedList<>();
Queue<TreeNode> queue=new LinkedList<>();
if(root==null){
return ans;
}
queue.offer(root);
while(!queue.isEmpty()){
List<Integer> level=new LinkedList<>();
int levelSize=queue.size();
for(int i=0;i<levelSize;i++){
TreeNode node=queue.poll();
level.add(node.val);
if(node.left!=null){
queue.offer(node.left);
}
if(node.right!=null){
queue.offer(node.right);
}
}
ans.add(level);
}
return ans;
}
}
(8)给定一个二叉树, 找到该树中两个指定节点的最近公共祖先
class Solution {
public boolean contain(TreeNode root, TreeNode target) {
if(root==null){
return false;
}
if(root==target){
return true;
}
return contain(root.left,target)||contain(root.right,target);
}
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(p==root||q==root){
return root;
}
boolean r1=contain(root.left,p);
boolean r2=contain(root.left,q);
if(r1==true&&r2==true){
return lowestCommonAncestor(root.left,p,q);
}
if(r1==false&&r2==false){
return lowestCommonAncestor(root.right,p,q);
}
return root;
}
}
(9)根据一棵树的前序遍历与中序遍历构造二叉树
class Solution {
public List<Integer> arrayToList(List<Integer> list,int[] array) {
for(int i=0;i<array.length;i++){
list.add(array[i]);
}
return list;
}
public TreeNode buildTree(int[] preorder, int[] inorder) {
List<Integer> inorderList=new LinkedList<>();
List<Integer> preorderList=new LinkedList<>();
inorderList=arrayToList(inorderList,inorder);
preorderList=arrayToList(preorderList,preorder);
return build(preorderList,inorderList);
}
public TreeNode build(List <Integer> preorderList, List<Integer> inorderList) {
if(inorderList.size()==0){
return null;
}
int rootVal=preorderList.get(0);
TreeNode root=new TreeNode(rootVal);
int leftLength=inorderList.indexOf(rootVal);
List <Integer> leftpreorderList=preorderList.subList(1,leftLength+1);
List<Integer> leftinorderList=inorderList.subList(0,leftLength);
TreeNode letfNode=build(leftpreorderList,leftinorderList);
List <Integer> rightpreorderList=preorderList.subList(leftLength+1,preorderList.size());
List <Integer> rightinorderList=inorderList.subList(leftLength+1,inorderList.size());
TreeNode rightNode=build(rightpreorderList,rightinorderList);
root.left=letfNode;
root.right=rightNode;
return root;
}
}
(10)根据一棵树的中序遍历与后序遍历构造二叉树
class Solution {
public List<Integer> arrayToList(List<Integer> list,int[] array) {
for(int i=0;i<array.length;i++){
list.add(array[i]);
}
return list;
}
public TreeNode buildTree(int[] inorder, int[] postorder) {
List<Integer> inorderList=new LinkedList<>();
List<Integer> postorderList=new LinkedList<>();
inorderList=arrayToList(inorderList,inorder);
postorderList=arrayToList(postorderList,postorder);
return build(inorderList,postorderList);
}
public TreeNode build(List <Integer>inorderList, List<Integer> postorderList) {
if(inorderList.size()==0){
return null;
}
int rootVal=postorderList.get(postorderList.size()-1);
TreeNode root=new TreeNode(rootVal);
int leftLength=inorderList.lastIndexOf(rootVal);
List <Integer> leftinorderList=inorderList.subList(0,leftLength);
List<Integer> leftpostinorderList=postorderList.subList(0,leftLength);
TreeNode letfNode=build(leftinorderList,leftpostinorderList);
List <Integer> rightinorderList=inorderList.subList(leftLength+1,inorderList.size());
List <Integer> rightpostorderList=postorderList.subList(leftLength,postorderList.size()-1);
TreeNode rightNode=build(rightinorderList,rightpostorderList);
root.left=letfNode;
root.right=rightNode;
return root;
}
}
(11)二叉树创建字符串
class Solution {
public String tree2str(TreeNode root) {
StringBuilder sb=new StringBuilder();
preOrder(root,sb);
String str=sb.toString();
str=str.substring(1,str.length()-1);
return str;
}
public void preOrder(TreeNode root,StringBuilder sb) {
if(root==null){
sb.append("()");
return;
}
sb.append("(");
if(root.left==null&&root.right!=null){
sb.append(root.val);
preOrder(root.left,sb);
preOrder(root.right,sb);
}else if(root.left!=null&&root.right==null){
sb.append(root.val);
preOrder(root.left,sb);
}else if(root.left==null&&root.right==null){
sb.append(root.val);
}else{
sb.append(root.val);
preOrder(root.left,sb);
preOrder(root.right,sb);
}
sb.append(")");
}
}
(12)二叉树前序非递归遍历实现
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ans = new ArrayList<>();
if (root == null) {
return ans;
}
int rootValue = root.val;
ans.add(rootValue);
ans.addAll(preorderTraversal(root.left));
ans.addAll(preorderTraversal(root.right));
return ans;
}
}
(13)二叉树中序非递归遍历实现
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List <Integer> list=new LinkedList<>();
if(root==null){
return list;
}
List <Integer> listLeft=new ArrayList<>();
List <Integer> listRight=new ArrayList<>();
listLeft=inorderTraversal(root.left);
list.addAll(listLeft);
list.add(root.val);
listRight=inorderTraversal(root.right);
list.addAll(listRight);
return list;
}
}
(14)二叉树后序非递归遍历实现
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer>list=new ArrayList<>();
if(root==null){
return list;
}
List<Integer>listLetf=new ArrayList<>();
List<Integer>listRight=new ArrayList<>();
listLetf=postorderTraversal(root.left);
list.addAll(listLetf);
listRight=postorderTraversal(root.right);
list.addAll(listRight);
list.add(root.val);
return list;
}
}