P3952 [NOIP2017 提高组] 时间复杂度

该文描述了一个编程挑战,要求编写程序来自动验证小明用A++语言编写的程序的时间复杂度是否正确。A++的循环结构为Fixy和E,其中Fixy初始化变量并进行比较,E表示循环结束。程序需检查循环结构的正确性以及复杂度的匹配性,输出Yes、No或ERR。样例程序和输出结果也一同给出。
摘要由CSDN通过智能技术生成

 题目描述:

小明正在学习一种新的编程语言 A++,刚学会循环语句的他激动地写了好多程序并给出了他自己算出的时间复杂度,可他的编程老师实在不想一个一个检查小明的程序,于是你的机会来啦!下面请你编写程序来判断小明对他的每个程序给出的时间复杂度是否正确。

A++语言的循环结构如下:

F i x y
    循环体
E

其中“F i x y”表示新建变量 i(变量i不可与未被销毁的变量重名)并初始化为x,然后判断 i 和  y 的大小关系,若i小于等于 y 则进入循环,否则不进入。每次循环结束后 i 都会被修改成 i+1,一旦 i 大于 y 终止循环。

x 和 y 可以是正整数(x和y的大小关系不定)或变量 n 。n 是一个表示数据规模的变量,在时间复杂度计算中需保留该变量而不能将其视为常数,该数远大于 100 。

“E”表示循环体结束。循环体结束时,这个循环体新建的变量也被销毁。

注:本题中为了书写方便,在描述复杂度时,使用大写英文字母“O”表示通常意义下“Θ”的概念。

输入格式:

输入文件第一行一个正整数 t ,表示有 t(t ≤10)个程序需要计算时间复杂度。每个程序我们只需抽取其中“F i x y”和“E”即可计算时间复杂度。注意:循环结构允许嵌套。

接下来每个程序的第一行包含一个正整数 L 和一个字符串,L 代表程序行数,字符串表示这个程序的复杂度,“O(1)”表示常数复杂度,“O(n^w)”表示复杂度为 n^w,其中 w 是一个小于 100 的正整数(输入中不包含引号),输入保证复杂度只有 O(1) 和 O(n^w) 两种类型。

接下来 L 行代表程序中循环结构中的“F i x y”或者“E”。

程序行若以“F”开头,表示进入一个循环,之后有空格分离的三个字符(串) i x y,其中 i 是一个小写字母(保证不为“n”),表示新建的变量名,x 和 y 可能是正整数或 n,已知若为正整数则一定小于 100。

程序行若以“E”开头,则表示循环体结束。
 

输出格式:

输出文件共 t 行,对应输入的 t 个程序,每行输出“Yes”或“No”或者“ERR”(输出中不包含引号),若程序实际复杂度与输入给出的复杂度一致则输出“Yes”,不一致则输出“No”,若程序有语法错误(其中语法错误只有:①F和E不匹配;②新建的变量与已经存在但未被销毁的变量重复两种情况),则输出“ERR”。

注意:即使在程序不会执行的循环体中出现了语法错误也会编译错误,要输出“ERR”。
 

样例数据1

8
2 O(1)
F i 1 1
E
2 O(n^1)
F x 1 n
E
1 O(1)
F x 1 n
4 O(n^2)
F x 5 n
F y 10 n
E
E
4 O(n^2)
F x 9 n
E
F y 2 n
E
4 O(n^1)
F x 9 n
F y n 4
E
E
4 O(1)
F y n 4
F x 9 n
E
E
4 O(n^2)
F x 1 n
F x 1 10
E
E

样例输出:

Yes
Yes
ERR
Yes
No
Yes
Yes
ERR 

备注:

【输入输出样例1说明】
第一个程序 i 从 1 到 1 是常数复杂度。
第二个程序 x 从 1 到 n 是 n 的一次方的复杂度。
第三个程序有一个F开启循环却没有 E 结束,语法错误。
第四个程序二重循环,n 的平方的复杂度。
第五个程序两个一重循环,n 的一次方的复杂度。
第六个程序第一重循环正常,但第二重循环开始即终止(因为n远大于100,100大于4)。
第七个程序第一重循环无法进入,故为常数复杂度。
第八个程序第二重循环中的变量 x 与第一重循环中的变量重复,出现语法错误 ②,输出 ERR 。 

【数据规模与约定】
对于 30% 的数据:不存在语法错误,数据保证小明给出的每个程序的前 L/2 行一定为以 F 开头的语句,第 L/2+1 行至第 L 行一定为以 E 开头的语句,L<=10,若 x、y 均为整数,x 一定小于 y,且只有 y 有可能为 n 。

对于 50% 的数据:不存在语法错误,L<=100,且若 x、y 均为整数,x 一定小于 y , 且只有y有可能为 n 。

对于 70% 的数据:不存在语法错误,L<=100。

对于 100% 的数据:L<=100。

AC题解:

#include <iostream>
#include <stack>
using namespace std;
const int maxn = 105; // 程序代码的最大行数
int n, m, w;          // 表示n个测试用例,每个用例的程序有几行,变量w保存复杂度
string str;           // 时间复杂度式子
string code[maxn];    // 程序代码
int sread(int &x, string s)
{
    int res = 0;
    int len = s.length();
    while ((s[x] < '0' || s[x] > '9') && x < len)
    { // 不是数字
        if (s[x] == 'n')
        {
            x++; // 一定要后移,它用于后面用到新的x
            return 1000000;
        }
        ++x;
    }
    while (s[x] >= '0' && s[x] <= '9' && x < len)
    { // 计算时间复杂的阶
        res *= 10;
        res += s[x] - '0';
        x++;
    }
    return res;
}
int getstr()
{
    int res = 0, x = 3; // 从字符串的str[3]以后遍历就是为了算时间复杂度0(n^w)中的w
    int len = str.size();
    if (str[2] == 'n')
        res = sread(x, str);
    else
        res = 0;
    return res;
}
int check()
{
    int res = 0, now = 0;
    // res用于存储最终结果,表示程序的实际复杂度
    // now表示当前循环嵌套层数
    int a, b, x;
    // a和b用于存储循环变量的初始值和结束值
    // x用于调用sread函数时传递参数
    stack<int> s;
    // 用于存储变量名
    int flag = -1;
    // flag表示当前是否在不会执行的循环中,flag==-1表示当前循环是有效的
    bool ins[26] = {0};
    // 数组 ins[k] = true/false, 表示变量k是否已经被创建,是否已经被使用;
    bool ef[26] = {0};
    // ef[k] = true/false, 表示变量k是否在有效循环中。
    for (int i = 1; i <= m; i++)
    {
        if (code[i][0] == 'F')
        {
            int k = code[i][2] - 'a'; // 标记循环变量
            if (ins[k] || k == flag)  // 该变量名已经被使用,命名冲突,程序出错
                return -1;
            s.push(k);             // 否则将变量名入栈
            ins[k] = true;         // 标记
            x = 4;                 // 初始值下标
            a = sread(x, code[i]); // 初始值
            b = sread(x, code[i]); // 结束值
            if (b - a > 1000)
            {
                if (flag == -1) // 当前循环是有效的
                {
                    now++;
                    res = max(res, now); // 更新最大阶
                    ef[k] = true;
                }
            }
            if (a > b)
            // 函数检查初始值是否大于结束值,则表示这是一个不会执行的循环。此时,如果当前不在不会执行的循环中,则更新标记。
            {
                if (flag == -1)
                    flag = k;
            }
        }
        // 当前行以’E’开头,则表示一个循环结束。此时,函数会检查栈是否为空。如果为空,则返回-1表示语法错误。否则,将栈顶元素弹出,并更新相关状态。
        else if (code[i][0] == 'E')
        {
            if (s.empty())
            {
                return -1;
            }
            int k = s.top();
            s.pop();
            ins[k] = false;
            /*后面flag判断主要是为了处理这种情况
            F a 0 10
            F b 10 0
            E
            F c 0 10
            E
            E*/
            if (flag == k) // 如果当前在无效循环的结束时,更新flag表示下次循环就是有效的
                flag = -1;
            /*下面说明ef数组,如果没有ef数组判断k是否为对时间复杂度有影响的循环变量,直接对now--就会导致错误
            F a 1 n
            F b 1 1
            E
            E
            */
            // 如果当前结束的循环 k 是一个有效的循环(即 ef[k] 为 true),则将 now(当前有效循环的嵌套层数)减一
            if (ef[k])
            {
                ef[k] = false; // 撤销
                now--;
            }
        }
    }
    if (!s.empty()) // 当所有代码都处理完毕后,函数检查栈是否为空。如果不为空,则返回-1表示语法错误。否则,返回最大嵌套层数。
        return -1;
    return res;
}
int main()
{
    cin>>n;
    cin.ignore();//
    while (n--)
    {
        int ww;
        cin>>m;
        //在使用cin >> m语句读入程序行数后,输入缓冲区中还剩下一个换行符。如果直接调用getline(cin, str)语句,它会读入这个换行符,导致读入的复杂度为空。
        cin.ignore();//清除输入缓冲区中的换行符
        getline(cin, str);
        w = getstr();
        for (int i = 1; i <= m; i++)
        {
            getline(cin, code[i]);
        }
        ww = check();
        if (ww == -1)
        {
            cout << "ERR" << endl;
        }
        else
        {
            if (ww == w)
            {
                cout << "Yes" << endl;
            }
            else
            {
                cout << "No" << endl;
            }
        }
    }
    return 0;
}


 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值