Codeforces Round 921 (Div. 2) A~D

A.

假设前k的小写字母为a,b,c(取k=3),那么所有长度为n的字符串组合包含n个字符,其中每个字符都属于{a,b,c},假定每个块中至少包含{a,b,c}中的元素一次,那么在每一个块中都含有{a,b,c}的任意元素,组成任意n个字符长度的串,只需要n个块就可以了,最短的情况就是,每个块就是集合{a,b,c};

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define has1 __builtin_popcount
long long qpow(long long a, long long b, long long m)
{
    a %= m;
    long long res = 1;
    while (b > 0)
    {
        if (b & 1)
        {
            res = res * a % m;
        }
        a = a * a % m;
        b >>= 1;
    }
    return res % m;
}
long long quickmul(long long a, long long b, long long p)
{
    long long ret = 0;
    while (b)
    {
        if (b % 2)
            ret = (ret + a) % p;
        a = (a + a) % p;
        b /= 2;
    }
    return ret;
}

void solve() {
    int n, k;
    cin >> n >> k;
    string s;
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < k; ++j) {
            s.push_back('a' + j);
        }
    }
    cout << s << '\n';
}


int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int t;
    cin >> t;
    while (t--)
    {
        solve();
    }
    return 0;
}

B.

题意为:将一个数x分解成n个数,保证这n个数的最大公约数尽可能的大,假定答案为y,那么可以保证分解的每个数都是y的倍数并且分解的个数一定要>=n即可

void solve() {
    ll x,n;
    cin>>x>>n;
    ll l=1LL,r=x;
    if(n==1){
        cout<<x<<endl;
        return;
    }
    if(x/n*n==x){
        cout<<x/n<<endl;
        return;
    }
    int ans=1;
    for(int i=2;i*i<=x;i++){
        if(x%i==0){
            if(x/i>=n){
                ans=max(ans,i);
            }
            if(i>=n){
                ans=max(ans,(int)x/i);
            }
        }
    }
    cout<<ans<<endl;
}

C.

由A的分析可以知道,能不能包含所有的组合,就是看这个字符串包含了几个集合块,如果少了集合块那么肯定是输出NO,怎么确定一定不存在的字符串呢?首先可以知道在组合某一个块时如第j块,缺少的字符肯定是在字符串位置j不能够满足的,但是怎么保证我输出的字符串在第j个位置不能由前面的j-1个块来提供呢?(如aabc|abc|bc)第三个块缺少a,那么我输出的第三个字符就应该为a(表示xxa不是字符串s的子序列),但是如果我选择aaa的话是不对的,因为第一个块可以提供两个字符a,所以为了保证这种情况,我们选择的位置i上的字符一定要是第i个块中唯一出现的字符(在保证每个块只包含一次集合{a,b,c}时,唯一符号就是集合的最后一个字符),所以示例aabc|abc|bc的输出结果应该是cca

void solve()
{
    int n,k,m;
    cin>>n>>k>>m;
    vector<bool> a(k);
    int ans=0;
    int cnt=0;
    string s;
    cin>>s;
    string ansstring="";
    for(int i=0;i<m;i++){
        if(a[s[i]-'a']==false){
            a[s[i]-'a']=true;
            cnt++;
        }
        if(cnt==k){
            ansstring+=s[i];
            ans++;
            cnt=0;
            for(int j=0;j<k;j++){
                a[j]=false;
            }
        }
        // cout<<ans<<endl;
    }
    // cout<<cnt<<" "<<ans<<endl;
    if(ans>=n){
        cout<<"YES"<<endl;
    }
    else{
        cout<<"NO"<<endl;
        for(int i=0;i<k;i++){
            if(a[i]==false){
                ansstring+=char(i+'a');
                break;
            }
        }
        cout<<ansstring;
        for(int i=ans+1;i<n;i++){
            cout<<'a';
        }
        cout<<endl;
    }

}

D.

解题过程见代码注释:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define has1 __builtin_popcount
//快速幂
long long qpow(long long a, long long b, long long m)
{
    a %= m;
    long long res = 1;
    while (b > 0)
    {
        if (b & 1)
        {
            res = res * a % m;
        }
        a = a * a % m;
        b >>= 1;
    }
    return res % m;
}
// 快速乘
long long quickmul(long long a, long long b, long long p)
{
    long long ret = 0;
    while (b)
    {
        if (b % 2)
            ret = (ret + a) % p;
        a = (a + a) % p;
        b /= 2;
    }
    return ret;
}
const int MOD=1e9+7;
const int N =2e5+10;
ll F[N];
ll C(int n,int m){
    ll B=quickmul(F[m],F[n-m],MOD);
    return quickmul(F[n],qpow(B,MOD-2,MOD),MOD);
}
void pre(){
    F[0]=1;
    for(int i=1;i<=N;i++){
        F[i]=quickmul(F[i-1],i,MOD);
    }
}
void solve()
{
    ll n,m,k;
    cin>>n>>m>>k;
    ll p;
    if(n%2==0) p=n/2*(n-1);
    else{
        p=(n-1)/2*n;
    }
        //n个人有n*(n-1)/2种相互关系
    // 总的期望值=E(d1+d2+d3+d4.....+ds)=E(d1)+E(d2)+...+E(dp);因为其他的关系权值为0,且不会变,故对结果有影响的实际上只有m对关系,dx表示第x对关系的选中情况产生的价值
    /*
    现在来考虑每一对关系对结果的价值:
    设某对关系权值为w,那么假如选中该关系一次,则对应的方案数是:C(k,1)*(p-1)^(k-1);选中一次,其它的k-1次选中的是此外的p-1种关系,产生价值为w*C(k,1)*(p-1)^(k-1);
    如果选中该关系j次那么,产生价值为(w+w+1+w+2+...+w+j-1)*C(k,j)*(p-1)^(k-j)
    最后分析多种关系的情况,产生价值为(w1+w1+1+....+w1+j-1)*C(k,j)*(p-1)^(k-j)+(w2+w2+1+...+w2+j-1)*C(k,j)*(p-1)^(k-j)+.....;
    设所有m对有效关系权值和为s,则总的贡献为:
    i从1-k次遍历选中次数,每次的贡献为(s+s+m+....s+m*(i-1))*C(k,i)*(p-1)^(k-i);
    */ 
   ll sum=0;
   ll a,b,c;
   for(int i=0;i<m;i++){
    cin>>a>>b>>c;
    sum=(sum+c);
   }
   if(m == 0) {
        cout << "0\n";
        return;
    }
   ll ans=0;
   ll cur=0;//表示前缀(s+s+m+....s+m*(i-1))的值
   for(int i=1;i<=k;i++){
    cur=((cur+(sum+quickmul(i-1,m,MOD)))+MOD)%MOD;
    ans=((ans+(quickmul(quickmul(C(k,i),cur,MOD),qpow(p-1,k-i,MOD),MOD)))+MOD)%MOD;;
   }
   ans=quickmul(qpow(qpow(p,k,MOD),MOD-2,MOD),ans,MOD);//权值和/总的方法数,这里需要使用逆元
    // vector<int> 
    cout<<ans<<endl;
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int t;
    cin >> t;
    pre();
    while (t--)
    {
        solve();
    }
    return 0;
}

  • 9
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值