自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(151)
  • 收藏
  • 关注

原创 直接与单细胞数据进行对话?这篇大子刊通过三个基础模型实现无代码分析(CellWhisperer)

以6个数据集约10万细胞的人胚scRNA-seq为对象,作者把Carnegie阶段的文本描述变成查询,计算每日龄的平均分数,得到与受精后时间吻合的阶段性轨迹;②对圈选细胞可直接在聊天框请求“描述这些细胞”,系统基于选区的平均嵌入生成包含细胞类型、组织/发育信息与代表基因的文本报告;简单来讲,CellWhisperer 通过把转录组信号和自然语言文本放到同一个嵌入空间,再配一个能看得懂嵌入的聊天模型,让研究者直接用自然语言去搜细胞、给聚类簇起名、问基因功能并拿到解释性回答,从而降低门槛、加速探索。

2025-12-31 15:21:32 1128

原创 不要再做 ssGSEA 了!试试这个专门为空转设计的基因集富集工具 EnrichMap

生信碱移EnrichMap,通过纳入空间位点信息,专用于空间转录组数据基因集分析。组织微环境并不是细胞任意分布组成,而是由上皮、免疫、间质细胞及细胞外基质等共同构成的高度空间化生态系统。这种空间结构决定了发育、稳态与疾病(尤其是肿瘤)中的关键生物学过程。空间转录组(ST)的快速发展,使研究者可以在保留组织形态与空间邻域信息的前提下,进行单细胞尺度的转录组分析。基因集富集或基因集打分常常被用于评估细胞当前转录状态对应的功能水平。传统的方法大多建立在“样本/细胞相互独立”的假设上。

2025-12-31 15:19:16 658

原创 这个工具可以分析空间层面的转录因子网络!专门为空间转录组设计,作者已经在多种癌症上进行了示例分析

生信碱移STAN 工具包,系统性地将TF–靶基因先验信息、空间转录组表达、空间坐标以及 H&E 形态学特征整合到一个模型中,用以推断每个 spot 空间信息驱动的 TF 活性程度以及潜在网络互作。如何在组织原位、在真实微环境中,准确刻画细胞层级的转录因子(transcription factors, TFs)活性是近几年转录组研究的热点。尽管如此,单细胞测序虽然能看到转录本丰度,但测序深度低导致转录因子往往表达不高。不仅如此,转录因子受翻译后修饰与微环境信号调控,mRNA 水平并不能直接代表其功能活性。

2025-12-31 15:18:16 495

原创 神经网络单细胞预后分析:这个方法直接把 TCGA 预后模型那一套迁移到单细胞与空转数据上了!竟然还能做模拟敲除与预后靶点筛选?!

④ 第四阶段用 SHAP 量化基因对 High-Risk 判别的贡献,并把贡献映射回 W,同时将患者风险更新回 v,让单细胞与bulk的信号在循环中迭代更新(有种EM算法的感觉了,这种神经网络的EM这几年其实还不少)。尽管紫色也有,但是没有蓝色的多。该框架以迭代反馈的方式,把 bulk 队列中的预后信息整合到单细胞表示学习中,从而识别与预后不良结局相关的 High-Risk 细胞群,并在此基础上进行多种下游分析。换句话说,在肿瘤领域,预后分析应当在单个细胞水平进行,因为细胞的异质性是极其大的。

2025-12-31 15:17:16 1486

原创 单细胞空转CNV分析工具:比 inferCNV 快10倍?!兼容单细胞与空转的 CNV 分析与聚类,竟然还支持肿瘤的亚克隆树构建!

生信碱移fastCNV 是scRNA-seq与空间转录组(含Visium HD)的快速 CNV 推断工具,比常规工具 inferCNV 运行速度快 10 倍,平均内存占用减少 94%。不仅如此,fastCNV 通过将 spots/cells 聚合为 meta-spots/meta-cells 以增强信号,输出全基因组 CNV 热图,并进行 CNV 聚类、克隆树推断与染色体臂级别 CNV 事件注释。

2025-12-31 15:15:19 819

原创 scSurv:单个细胞水平的预后得分+预后相关基因!甚至还有 bulk 反卷积的功能?

生信碱移scSurv 可以用于单细胞与空间/bulk组学联合分析,其基于临床预后输出单个细胞风险得分与反卷积比例,在此基础上能够进一步筛选预后相关基因,同时评估细胞群体在 bulk 中的丰度与预后关联。肿瘤等复杂疾病的一个关键难点在于细胞异质性,即同一种细胞类型内部往往存在连续的状态变化与功能分化,而这些差异会影响疾病进展与治疗反应。单细胞组学可以在细胞尺度上研究不同群体的反应多样性。但是现有分析常常仍停留在 bulk 组学层面,研究者无法知道究竟是哪些细胞状态在推动风险上升或下降。

2025-12-31 15:13:00 468

原创 Seurat.utils:从零到图,单细胞测序分析的瑞士军刀

生信碱移Seurat.utils 提供了多个单细胞分析整合函数,能够实现快速 UMAP、QC、聚类重编号、marker 展示、火山图与 GO 富集等分析。单细胞转录组(scRNA-seq)能把同一样本中不同细胞类型、不同状态乃至稀有细胞群体区分开来,因此非常适合用来研究组织异质性、发育轨迹、免疫微环境和疾病相关细胞状态变化。

2025-12-31 15:11:50 1005

原创 自动确定单细胞聚类数量!?这才是做单细胞分析最需要的 R 包(recall)

生信碱移Recall 通过人工生成随机的噪声假基因判断细胞聚类簇是否拆得过细,如果过细就自动往回合并或者调整分辨率,从而得到优化的聚类。单细胞 RNA 测序(scRNA-seq)能够分析包含数千至数百万个单细胞转录组图谱的数据集。主流分析流程 seurat 与 scanpy 一般包括以下三个大步骤:预处理(质控、归一化、选 HVGs、PCA)无监督聚类(在 PCA 空间构建的邻接图上 执行Louvain或Leiden聚类算法)

2025-11-27 15:16:37 883

原创 直接与单细胞数据进行对话?这篇大子刊通过三个基础模型实现无代码分析(CellWhisperer)

以6个数据集约10万细胞的人胚scRNA-seq为对象,作者把Carnegie阶段的文本描述变成查询,计算每日龄的平均分数,得到与受精后时间吻合的阶段性轨迹;②对圈选细胞可直接在聊天框请求“描述这些细胞”,系统基于选区的平均嵌入生成包含细胞类型、组织/发育信息与代表基因的文本报告;简单来讲,CellWhisperer 通过把转录组信号和自然语言文本放到同一个嵌入空间,再配一个能看得懂嵌入的聊天模型,让研究者直接用自然语言去搜细胞、给聚类簇起名、问基因功能并拿到解释性回答,从而降低门槛、加速探索。

2025-11-13 23:22:25 849

原创 四种参数直接替代单细胞基因表达差异?!这篇刚发的 Nature Methods 方法可以从多个角度来看基因的表达变化!

为此,来自加州理工学院学院的研究者开发了 Monod 算法,于2025年11月07日发表于 Nature Methods [IF:32.1],其以生物物理方式建模噪声,并拟合未剪接(nascent)与已剪接(mature)RNA 计数的联合分布,把技术噪声与生物变化拆开,在此基础上获得一批可解释的状态参数(如转录频率大小K/b、剪接率 β、降解/周转率 γ 等)。、③ β,剪接速率(未剪接→已剪接的速度)、④ γ,降解速率(已剪接RNA被分解的速度)。作者的github中有完整的分析代码,还是比较长的。

2025-11-13 23:19:58 424

原创 200 本 2025 生信友好期刊,附影响因子、中科院分区与生信发文数量!

数据来源于今年文章发表情况,仅供佬哥佬姐参考。为了方便检索就不放图片了,环境科学与生态学1区top。环境科学与生态学2区top。引用转载请注明出处!综合性期刊1区top。综合性期刊1区top。环境科学与生态学2区。综合性期刊1区top。综合性期刊1区top。综合性期刊1区top。综合性期刊1区top。环境科学与生态学2区。

2025-11-04 09:06:47 1467

原创 基因集预后模型泛滥了?关我Transformer什么事!!!

第四步,将多头连接后的矩阵依次通过全连接层、ReLU 层、随机 dropout 层、另一全连接层与另一随机 dropout 层,最后再进行层归一化。a.维恩图基于以 cGAS-STING 为中心的通路中按 AUC 选取的特征,展示用于预测抗 PD-1/PD-L1 应答结局的特征筛选结果。作者先在 TCGA-LIHC 中计算了 cGAS–STING 通路的 ssGSEA 分数,随后与 50 个 hallmark 通路做 Spearman 相关,鉴定了与 cGAS–STING 相关的多个通路。

2025-11-03 15:47:31 1006

原创 PHLOWER 算法:单细胞分化轨迹+核心调控基因!?这篇刚发的 Nature Methods 算法后续可以替代 monocle 做一些高级分析!

生信碱移PHLOWER 是一个单细胞拟时序算法,能够支持从单模态或者多模态数据里得到复杂分化树,并在此基础上精准定位分叉事件与上游调控因子。细胞分化是指细胞通过改变其染色质和表达程序以获得更专门化功能的过程,这一过程不仅在多细胞生物的发育中至关重要,而且在疾病的发生和进展中也起关键作用。转录因子(TFs)是与调控 DNA 区域(开放染色质区域)结合的蛋白质,是基因表达的关键调控者,从而协调整个细胞分化过程。

2025-11-03 15:46:41 1075

原创 为什么我们要从DNA序列预测基因表达?模拟碱基敲除+eQTL验证,这篇 Nature Methods 单细胞基础模型得仔细读读

生信碱移从基因组序列预测特定组学表达,不仅仅是概念,而是通过反事实来推断真实条件下的波动规则。

2025-11-03 15:45:07 716

原创 TCMNP包教程:这个R包够猛!除了药物+疾病+靶点+转录因子数据库,还能做网络药理学全流程可视化分析?!

生信碱移TCMNP 包,一路打通网络药理学数据库与可视化分析。最近,小编冲浪的时候看到一个今年发表的网络药理学 R 包 TCMNP,据说整合了多个数据库以及多种可视化分析函数,一眼看下来确实够顶。具体来说,TCMNP 整合了几大类型的数据库:① 三大药物成分及靶点数据库TCMSP、DrugBank、ETCM;② 疾病基因数据库 DisGeNET 与 OMIM;③ 转录因子及其对应靶基因数据库 TRRUST。

2025-09-23 15:46:23 1598

原创 几行代码实现组织特异性基因富集分析?!(TissueEnrich包)

生信碱移TissueEnrich基于Human Protein Atlas、GTEx和mouse ENCODE的多组织RNA‑seq数据,可以用于判断一组基因里是否富集了某一组织特异的基因RNA测序技术的发展使得大规模比较不同发育阶段、细胞类型及条件下的基因表达成为可能。通过差异基因表达分析或共表达网络分析,研究者可以鉴定一系列的潜在关键基因用于功能分析。基因本体(GO)富集分析被广泛用于探究给定基因集合的功能,尽管GO分析能识别特定基因涉及的生物过程,但无法确定它们是否特异于某些组织 (组织特异性)。

2025-07-28 16:14:24 925

原创 我们的单细胞数据真的能用大语言基础模型吗?

生信碱移来自微软研究院的研究者在不进行任何微调的前提下对Geneformer和scGPT进行了系统性评估,发现这些单细胞大语言模型在零样本情况下的性能表现甚至不如简单方法。基于目前积累的大量单细胞数据,多项单细胞大语言模型被陆续提出。大部分研究者希望借助如scGPT和Geneformer这类预训练大模型,实现细胞类型注释、基因表达预测等多种分析的“自动化”。另外,因为这些大模型都在跨物种/细胞类型上训练,所以被认为能够处理跨批次数据。

2025-07-28 16:13:35 1186

原创 MR-link-2:多效性顺式孟德尔随机化分析!

生信碱移孟德尔随机化能够从观测数据中识别因果关系,但当遗传工具局限于单一关联区域时,其第一类错误率会升高。一项研究提供了MR-link-2方法,能够从单一关联区域的汇总统计数据中识别出具有多效性鲁棒性的因果关系,使其特别适用于分子表型的应用研究在人类生物医学研究中,确定因果关系的金标准是随机对照试验(RCT),但其高成本、伦理限制和实施难度,使得许多生理或分子层面的因果机制难以通过实验手段直接检验。

2025-07-28 16:12:12 1646

原创 对感兴趣区域 (ROI) 进行空间分析!?这个空转工具值得在自己的数据上试试(SCIMAP库)

生信碱移在空间图像分析中,添加感兴趣区域(ROIs)对于开展后续功能分析至关重要,例如识别不同的组织学部位、肿瘤区域或病理边界划分。空间转录组ROI分析 (Region of Interest) 是指在组织切片中选取特定区域,对该区域内的空间转录表达数据分区分析。ROI基于人工知识经验进行个性化划分,可以指定分析局部微环境的分子特征、细胞组成与空间结构关系。通过整合组织切片与空间表达数据,随后对指定空间区域进行圈选(比如肿瘤核心区/非核心区),ROI分析能够在单切片上进行比较分析。

2025-07-28 16:10:25 657

原创 删除二维特征图中指定区域的样本

df_renew = df_renew[~inside_mask] # 去除多边形内的点。

2025-07-28 16:08:47 273

原创 一台笔记本实现基因表达敲除?!scTenifoldKnk 单细胞基因模拟敲除教程

基因扰动实验是研究特定基因功能作用的强大方法。常用的方案一般是使用基因改造动物进行的基因敲除(KO)或CRISPR基因扰动。在KO实验中,研究人员一般通过对比KO和野生型WT实验动物的表型或者多组学差异来推断目标基因的功能。传统的基因敲除实验通常需要大量的实验和动物资源。最近发展的技术,如Perturb-seq,结合了CRISPR扰动和单细胞RNA测序(scRNA-seq)来进行遗传筛选,使得研究人员能够在大量细胞中研究基因功能。▲ CRISPR-based Perturb-seq原理。

2025-05-29 16:50:46 8539 6

原创 单细胞大队列NMF怎么做?跨癌种聚类+基因特异性,这篇 Nature Cancer 纯生信有点与众不同!

近年来,单细胞RNA测序(scRNA-seq)在肿瘤学领域越来越热门。与传统的组织bulk转录组分析相比,单细胞技术能够在细胞分辨率下揭示不同细胞类型、发育状态及基因表达程序在肿瘤微环境中的具体表现。现有的多数单细胞肿瘤研究仍局限于样本数量较少的队列,难以系统性地捕捉跨癌种、跨患者的共性与特异生物学模式。

2025-05-29 16:48:54 1865

原创 两个分组的时间序列差异分析,总算找到一个方便的方法了!

该方法并没有包装成一个R包,代码确实十分简短,一共只需要定义两个函数与calc.tau# 定义函数计算tau与空分布tau <- 0tau <- 0如前所述,用于计算基因空分布进而判断显著性,calc.tau用于计算tau值,代表基因在分组间的时间表达模式是否相似。

2025-05-29 16:46:57 1505

原创 TCGA数据库临床亚型可用!贝叶斯聚类+特征网络分析,这篇 NC 提供的方法可以快速用起来了!

个体的遗传与环境背景决定其应对疾病的反应状态,进而产生单一疾病的不同疾病分型。不同疾病分型的病人具有高度异质性,但在临床表现和基因特征上可能存在显著重叠。比如,髓系肿瘤包括急性髓系白血病(AML)、骨髓增生异常综合征(MDS)、慢性髓单核细胞白血病(CMML)和骨髓增殖性肿瘤(MPN)等多个疾病类型,他们之间并非截然分离,而是构成一个连续谱系,其中MDS、CMML 和 MPN 等可进一步进展为AML。

2025-05-07 14:28:07 1333 3

原创 scanpy处理:使用自定义 python 函数读取百迈客空间转录组数据(百创智造S1000)

原本的版本用的怪怪的,定义了一个函数方便直接在解释器中使用。

2025-05-07 14:26:15 321

原创 大语言模型时代,单细胞注释也需要集思广益(mLLMCelltype)

细胞类型注释是单细胞RNA测序(scRNA-seq)数据分析中的关键步骤。目前注释方法的金标准依赖于人工专家,需要手动将每个细胞簇中高表达的基因与文献中的经典细胞类型标记基因进行比对。尽管如此,这一流程及其耗时,而且需要专业的生物知识。随着测序成本的下降,当数据集规模扩大到数百万个来自不同组织的细胞,手动注释的方法已变得难以实现。

2025-04-24 14:29:29 1704

原创 Nature Genetics | 测序技术与深度学习在 circRNA 鉴定中的应用

circRNA 是一类广泛分布于各种生物体中的共价闭合 RNA 分子,参与的功能包括:①隔离 miRNA 和 RNA 结合蛋白(RBP)、②调控线粒体活性氧、③编码隐蔽肽段以及调节先天免疫。需要注意的是,circRNA 的环状结构赋予了其对内源性 RNA 外切酶降解的抗性,使其相较于线性 RNA 具有更加卓越的稳定性。这一稳定性优势已被用于工程化 circRNA 的多种应用,如新型冠状病毒疫苗、基因组编辑平台、RNA 编辑和 RNA 疗法。然而,circRNA 分子序列和细胞异质性的分析仍面临极大问题。

2025-04-24 14:28:21 1608

原创 入门级宏基因组数据分析教程,从实验到分析与应用

宏基因组学彻底改变了研究人员对微生物群落的认识,微生物组不仅是环境组分,更作为共生体深刻影响着宿主的健康与功能。鉴于微生物群落固有的复杂性及其所处环境的多样性,研究者进行一些宏基因组学研究时必须精心设计以获取能真实反映目标群体特征的准确结果。

2025-04-11 11:27:52 3571

原创 多组学空转数据如何进行整合分析?(SpatialGlue库)

空间转录组学是继单细胞转录组学之后的一项重大技术革新,能够实现空间级别的组学和分辨率。目前,越来越多的技术实现了在同一个组织切片上同时分析不同组学。空间技术主要可以划分为测序技术和成像技术两大类别。①测序技术包括DBiT-seq、spatial-CITE-seq、spatial ATAC–RNA-seq、CUT&Tag-RNA-seq、SPOTS、SM-Omics、Stereo-CITE-seq、spatial RNA-TCR-seq和10x Genomics Xenium等;

2025-04-11 11:26:33 1759

原创 简单方法胜过大语言模型?!单细胞扰动敲除方法的实验

如果对细胞进行一个或多个基因敲除扰动(红色部分,比如通过实验干预特定基因的活性),会导致一些基因表达水平发生变化(紫色部分),这种变化可能是增强、减弱或保持不变。先进的深度学习方法,如基于 transformer 的基础模型,被认为能够学习单细胞中的基因表征,这些表征可以用于预测未见实验的结果,例如预测基因扰动敲除对其它基因转录表达的影响。与之相对, "加性模型" 则采用传统的线性思维,认为组合扰动敲除两个基因的效果,就是单独扰动每个基因效果的简单相加随后减去基线(预测基因扰动后的基因表达变化。

2025-03-26 10:52:19 1413

原创 美国国立卫生研究院经费仍然被冻结!存储超300万组基因数据的“数字方舟”或将面临资金断流

2025年1月20日,唐纳德·特朗普宣誓就职美国第47任总统,标志“特朗普2.0”时代的正式开启。从首日行政令剑指《巴黎气候协定》到系统性裁撤科研机构,这场“科学寒冬”的连锁反应正以惊人速度蔓延。在诸多危机中,一项潜在威胁对于国际生物研究者即为致命:对公共科学数据库的冲击——尤其是作为生命科学基石的基因表达数据库(GEO)。当政治意志与科学自由激烈碰撞,全球研究者担忧,这座存储超300万组基因数据的“数字方舟”,或将面临资金断流、审查加码与数据孤岛化的三重绞杀……

2025-03-26 10:48:55 1387

原创 多组学基因挖掘神器!空转+GWAS,将空间信息映射到人类复杂性状及疾病(gsMap)

为此,来自西湖大学的杨剑团队提出遗传学驱动的复杂性状空间细胞定位方法gsMap,通过整合高分辨率ST数据与GWAS汇总统计数据,实现性状相关细胞的空间解析定位。研究团队利用覆盖25个器官的胚胎ST数据集,通过模拟实验验证了gsMap的性能,并通过复现已知的性状相关细胞或区域证实了其敏感性。值得注意的是,杨剑团队同时也开发了SMR软件,所以这个工具还是有很大的学习价值的(尽管现在还处于预印本阶段)。

2025-03-26 10:47:30 2581 3

原创 细胞内与细胞间网络整合分析!神经网络+细胞通讯,这个单细胞分析工具一箭双雕了(scTenifoldXct)

生信碱移scTenifoldXct,一种结合了细胞内和细胞间基因网络的计算工具,利用 scRNA-seq 数据检测细胞间相互作用。单细胞 RNA 测序(scRNA-seq)能够以稳健且可重复的方式同时收集数万个细胞的转录组信息。利用 scRNA-seq 数据,可以通过复杂组织中细胞特异性配体-受体(LR)的映射来研究细胞通信网络。不断发展的 scRNA-seq 数据空间已经催生了许多用于挖掘细胞间通信信息的计算工具。然而,在检测结果中获得可靠的统计置信度仍然难以实现。

2025-03-26 10:46:27 1367

原创 同时调用多种单细胞基础模型?!这个工具务必要用到自己的课题中(BioLLM)

单细胞 RNA 测序(scRNA-seq)通过实现高分辨率转录组分析,彻底改变了传统分子生物学。已经开发了几种基础模型来分析大规模的单细胞测序数据,如 scBERT, Geneformer, scGPT 和 scFoundation。然而,这些模型不仅在架构设计和预训练策略上表现出一定差异,而且数据集大小和参数数量也有所不同。

2025-03-26 10:45:13 985

原创 没有分组信息怎么找到重要的通路基因集?!单细胞与空转分析适用(GESECA算法)

单细胞与空间多组学让我们能够在细胞/空间分辨率的情况下观察病理或生理相关的转录变化。基因集是一组具有类似功能或相同途径的基因集集合,在多组学分析中,常常观察特定基因集的表达变化来推断相应功能途径的活性。举个例子,在一些肾炎相关疾病中,铁死亡基因集发生显著表达变化影响疾病进展。常规的分析流程基于分组数据进行比较,比如 GSEA 使用 logFC 排序的基因列表观察特定基因集的表达变化。尽管如此,大多数据中通常没有明显的分组信息用于差异分析。一般来说,同一个基因集内部的基因变化是密切相关的。

2025-03-26 10:44:04 673

原创 空间多组学五大算法:cell2location + mistyR + Hotspot 精准解锁组织微环境,高分文章标配!

借助hotspot更精准识别感兴趣部位,完成基因集or细胞类型的空间位置识别Hotspot:①可以为你提供特定基因集的高富集区域识别,减少假阳性的存在;下面这篇来自 JTM [IF6.1] 的文章就借助了公共单细胞数据和公共空间转录组数据,完成了亚群级别的反卷积,最后结合细胞共定位的技术完成了感兴趣细胞的分析,为研究增色不少。在这些分析之外,还可以借助空间转录组受配体共定位,基于KNN算法计算每个spot最邻近的6个spot的配受体共定位情况,更好的为cellchat等分析结果做解释。

2025-03-26 10:37:04 2046

原创 进阶版孟德尔随机化方法!遗传变异聚类+异质性检验,避免水平多效性带来的假阳性结果(PCMR)

探究复杂性状之间的因果关系并确定疾病的因果风险因素,对于揭示各种疾病的病因学至关重要。孟德尔随机化 (Mendelian Randomization, MR) 是一种利用遗传变异作为工具变量(IVs)推断暴露因素(如血脂)与结局(如心血管疾病)间因果关系的统计方法。MR 本质的目标是去判断暴露是否会影响结局,这与一些队列观察性研究的目标是一致的(探索血脂是否会影响心血管疾病)。其核心假设是工具变量需满足以下条件:关联性:工具变量与暴露因素强相关;独立性:工具变量与混杂因素无关(如环境因素);

2025-03-26 10:35:32 1901

原创 使用TCGAbiolinks的GDCQuery_clinic函数时遇到报错:错误于set(x, j = name, value = value)

使用TCGAbiolinks的。

2025-03-05 17:48:57 816 1

原创 如何筛选重要的空间Spot点!空转+GWAS,将空间信息映射到人类复杂性状及疾病(gsMap)

为此,来自西湖大学的杨剑团队提出遗传学驱动的复杂性状空间细胞定位方法gsMap,通过整合高分辨率ST数据与GWAS汇总统计数据,实现性状相关细胞的空间解析定位。研究团队利用覆盖25个器官的胚胎ST数据集,通过模拟实验验证了gsMap的性能,并通过复现已知的性状相关细胞或区域证实了其敏感性。值得注意的是,杨剑团队同时也开发了SMR软件,所以这个工具还是有很大的学习价值的(尽管现在还处于预印本阶段)。

2025-03-05 09:38:05 1392

原创 【CrossEntropyLoss】TypeError: __init__() got an unexpected keyword argument ‘label_smoothing‘

是直接使用自定义的交叉熵损失,附有label_smoothing的参数设置。麻烦的解决方案: 升级torch版本,比如。: torch版本问题,用的是可能是。

2025-03-05 09:34:54 383

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除