Day27:代码随想录算法训练营第27天| 39.组合总和 |40.组合总和II

文章讲述了如何使用回溯法解决LeetCode中的组合总和问题,包括基本的39题版本和去重的40题版本,介绍了递归函数参数、终止条件和单层搜索逻辑,以及优化后的代码实现。
摘要由CSDN通过智能技术生成

39.组合总和

题目链接:39. 组合总和 - 力扣(LeetCode)

 题解:

 本题使用回溯法,回溯三部曲

(1):递归函数参数

定义两个全局变量,二维数组存放结果集,数组path存放符合条件的结果,题中给出的参数为candidates和target 

vector<vector<int>>result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex)

(2):递归终止条件

if (sum > target) {
   return;
}
if (sum == target) {
    result.push_back(path);
    return;
}

 (3):单层搜索逻辑

单层for循环从startlndex开始,搜索candidates集合 

for(int i = startIndex; i < candidates.size(); i++) {
        sum += candidates[i];
        path.push_back(candidates[i]);
        backtracking(candidates, target, sum, i);
        sum -= candidates[i];
        path.pop_back():
}

总结C++代码如下:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum > target) {
            return;
        }
        if (sum == target) {
            result.push_back(path);
            return;
        }

        for (int i = startIndex; i < candidates.size(); i++) {
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i); // 不用i+1了,表示可以重复读取当前的数
            sum -= candidates[i];
            path.pop_back();
        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        result.clear();
        path.clear();
        backtracking(candidates, target, 0, 0);
        return result;
    }
};

剪枝写法(优化代码)

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum > target) {
            return;
        }
        if (sum == target) {
            result.push_back(path);
            return;
        }

        for (int i = startIndex; i < candidates.size(); i++) {
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i); // 不用i+1了,表示可以重复读取当前的数
            sum -= candidates[i];
            path.pop_back();
        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        result.clear();
        path.clear();
        backtracking(candidates, target, 0, 0);
        return result;
    }
};

 40.组合总和II

 题目链接:40. 组合总和 II - 力扣(LeetCode)

题解:和上题一样使用回溯法,回溯三部曲,但这题有一点非常重要:去重

树结构:

40.组合总和II

 (1)递归函数参数

参数大致与39题中差不多,但还需要加上bool型数组used,用途是记录同一树枝上的元素是否使用过。

vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int sum , int startIndex, vector<bool>& used) {

(2):递归终止条件

if (sum > target) { 
    return;
}
if (sum == target) {
    result.push_back(path);
    return;
}

(3):单层搜索逻辑

for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
    // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
    // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
    // 要对同一树层使用过的元素进行跳过
    if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
        continue;
    }
    sum += candidates[i];
    path.push_back(candidates[i]);
    used[i] = true;
    backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1:这里是i+1,每个数字在每个组合中只能使用一次
    used[i] = false;
    sum -= candidates[i];
    path.pop_back();
}

总结C++代码:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {
        if (sum == target) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
            // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
            // 要对同一树层使用过的元素进行跳过
            if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
                continue;
            }
            sum += candidates[i];
            path.push_back(candidates[i]);
            used[i] = true;
            backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次
            used[i] = false;
            sum -= candidates[i];
            path.pop_back();
        }
    }

public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        vector<bool> used(candidates.size(), false);
        path.clear();
        result.clear();
        // 首先把给candidates排序,让其相同的元素都挨在一起。
        sort(candidates.begin(), candidates.end());
        backtracking(candidates, target, 0, 0, used);
        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值