山东大学软件学院创新项目实训DrugLLM-基于大语言模型的药物分子性质分析平台(五)

目录

一、本周进度

二、学习内容


一、本周进度

在之前几周的学习中,对整个DrugLLM大语言模型有了一个基本的认识,整体页面的设计也有了一个大致的框架,在本周中主要还是进行更加前沿论文的阅读,继续深入了解DrugLLM模型。

二、学习内容

通过图神经网络(GNN)和大型语言模型(LLM)的结合,提升了我们对结构活性关系的理解。GNN 负责从化合物分子图中学习表示,然后通过适配器转换为 LLM 可以接受的形式,进一步生成答案。

此外,DrugChat 还能够辅助先导化合物优化,并助力药物再定位。通过对化合物的深入分析,该系统不仅能找到更有效的先导化合物,还能发现现有药物的新用途。

更值得一提的是,该系统有助于减少失败率简化临床试验。作者收集了包含 10,834 种药物化合物和 143,517 个问题-答案对的数据集,并进行了端到端的训练,以确保系统的高准确性。

DrugChat 框架的整体概览:

DrugChat框架演示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值