目录
一、本周进度
在之前几周的学习中,对整个DrugLLM大语言模型有了一个基本的认识,整体页面的设计也有了一个大致的框架,在本周中主要还是进行更加前沿论文的阅读,继续深入了解DrugLLM模型。
二、学习内容
通过图神经网络(GNN)和大型语言模型(LLM)的结合,提升了我们对结构活性关系的理解。GNN 负责从化合物分子图中学习表示,然后通过适配器转换为 LLM 可以接受的形式,进一步生成答案。
此外,DrugChat 还能够辅助先导化合物优化,并助力药物再定位。通过对化合物的深入分析,该系统不仅能找到更有效的先导化合物,还能发现现有药物的新用途。
更值得一提的是,该系统有助于减少失败率和简化临床试验。作者收集了包含 10,834 种药物化合物和 143,517 个问题-答案对的数据集,并进行了端到端的训练,以确保系统的高准确性。
DrugChat 框架的整体概览:
DrugChat框架演示: