话说大诗人李白,一生好饮。
幸好他从不开车。
一天,他提着酒壶,从家里出来,酒壶中有酒 22 斗。
他边走边唱:
无事街上走,提壶去打酒。
逢店加一倍,遇花喝一斗。
这一路上,他一共遇到店 NN 次,遇到花 MM 次。
已知最后一次遇到的是花,他正好把酒喝光了。
请你计算李白这一路遇到店和花的顺序,有多少种不同的可能?
注意:壶里没酒 (00 斗) 时遇店是合法的,加倍后还是没酒;但是没酒时遇花是不合法的。
输入格式
第一行包含两个整数 NN 和 MM。
输出格式
输出一个整数表示答案。由于答案可能很大,输出模 10000000071000000007 的结果。
数据范围
对于 40%40% 的评测用例:1≤N,M≤101≤N,M≤10。
对于 100%100% 的评测用例:1≤N,M≤1001≤N,M≤100。
输入样例:
5 10
输出样例:
14
样例解释
如果我们用 00 代表遇到花,11 代表遇到店,1414 种顺序如下:
010101101000000
010110010010000
011000110010000
100010110010000
011001000110000
100011000110000
100100010110000
010110100000100
011001001000100
100011001000100
100100011000100
011010000010100
100100100010100
101000001010100
只需简单记忆化搜索即可
#include<iostream>
using namespace std;
long long dp[101][101][200];
long long process(int n,int m,int rest)
{
if(dp[n][m][rest]!=-1)
{
return dp[n][m][rest];
}
if(rest==0)
{
dp[n][m][rest]=m==0?1:0;
dp[n][m][rest]%=1000000007;
return dp[n][m][rest];
}
if(rest>m)
{
dp[n][m][rest]=0;
return 0;
}
if(m==rest)
{
dp[n][m][rest]=n==0?1:process(n-1,m,rest*2);
dp[n][m][rest]%=1000000007;
return dp[n][m][rest];
}
if(rest>100)
{
dp[n][m][rest]=0;
return 0;
}
int p=0;
if(n>0)
{
p+=process(n-1,m,rest*2);
}
if(m>0)
{
p+=process(n,m-1,rest-1);
}
dp[n][m][rest]=p;
dp[n][m][rest]%=1000000007;
return dp[n][m][rest];
}
int main()
{
int n,m;
cin>>n>>m;
for(int i=0;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
for(int k=0;k<200;k++)
{
dp[i][j][k]=-1;
}
}
}
long long num=process(n,m,2);
cout<<num;
return 0;
}