完全背包问题

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 ii 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数 N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

本来小白是直接用三重循环嵌套的结果时间超限了。。。

下面是优化过的代码: 

#include<bits/stdc++.h>
using namespace std;
int V[1005],W[1005];//定义体积、价值数组 
int dp[1005];
int main()
{
	int n,v;
	//扫入数据 
	cin>>n>>v;
	for(int i=1;i<=n;i++)
		cin>>V[i]>>W[i];
	
	for(int i=1;i<=n;i++)
	{
		for(int j=V[i];j<=v;j++)
		{
			dp[j]=max(dp[j],dp[j-V[i]]+W[i]);//完全背包的递推公式 
		}
	 } 
	 cout<<dp[v]<<endl;
	return 0;
 } 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
完全背包问题是一个经典的动态规划问题,它与01背包问题类似,但有一个重要的区别。在完全背包问题中,每种物品可以选择无限次放入背包中,而在01背包问题中,每种物品只能选择一次放入背包中。 解决完全背包问题的一种常见方法是将其转化为01背包问题。根据引用[3]中的思路,我们可以将每种物品拆分成多件只能选0件或1件的01背包中的物品。具体做法是,对于第i种物品,我们将其拆分成⌊V /Ci⌋件费用和价值均不变的物品,然后求解这个01背包问题。 在求解过程中,我们需要确定状态变量(函数)和状态转移方程。状态变量可以定义为dp[i][j],表示前i种物品放入容量为j的背包中所能获得的最大价值。状态转移方程可以表示为dp[i][j] = max(dp[i-1][j-k*Ci] + k*Wi),其中k表示第i种物品的数量。 边界条件是dp[0][j] = 0,表示没有物品可选时,背包的价值为0;dp[i][0] = 0,表示背包容量为0时,无法放入任何物品。 通过以上的分析,我们可以得到完全背包问题的动态规划解法。具体的代码实现和优化可以参考引用[1]和引用[2]中的内容。 总结起来,完全背包问题是一个经典的动态规划问题,可以通过将其转化为01背包问题来求解。在求解过程中,需要确定状态变量和状态转移方程,并考虑边界条件。通过动态规划的方法,可以高效地解决完全背包问题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值