排序不等式的理解证明与拓展

一、证明排序不等式

在推导n元排序不等式之前我们可以先推导2元排序不等式

证明

两式相减得

时等号成立

故我们可证得:二元排序不等式成立

我们再来看一下n元排序不等式的定义:

有两个有序数组:

  其中......是1,2,……,n的任意一个排列

则对于逆序和通过上方的2元调整可得 将上述调整拓展到三元即                                                       

不难看出,对于任何一种乱序和,总有种调整顺序可以达到目的。所以通过上述不断的“调整”方法,排序不等式的逆序和≤乱序和≤顺序和则易证。不等式等号在时成立。

二、能通过排序不等式推导出的结论 

1、通过上述推导,我们来使用同样的方式来证明下面这个不等式

有两个有序数组:则有

同样的,我们也先来证明一下2元的该不等式是否成立

 设 

均大于0,则两式相比≥ 1则该不等式成立.                 

∴该不等式成立

类似地对于乱序乘方则有

该不等式也可通过类似的“调整方式”来证明其成立.不难看出,对于任何一种乱序和或顺序和总有一种调整性序可以达到目的。不等式等号在时成立。

2、证明:

则原不等式转换为证明

由排序不等式显然能证明上述结论成立。等号在a=b=c时成立。

三、利用排序不等式来证明切比雪夫不等式

则有

对于中间一项我们不难看出其为n个乱序和的平均数

而对于乱序和总有逆序和乱序和顺序和

该不等式不难得证。不等式等号在时成立。

如有错误,感谢指出。

如有补充,欢迎私言作者修改。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值