一、证明排序不等式
在推导n元排序不等式之前我们可以先推导2元排序不等式
设证明
两式相减得
时等号成立
故我们可证得:二元排序不等式成立
我们再来看一下n元排序不等式的定义:
有两个有序数组:则
其中......
是1,2,……,n的任意一个排列
则对于逆序和通过上方的2元调整可得 将上述调整拓展到三元即
不难看出,对于任何一种乱序和,总有种调整顺序可以达到目的。所以通过上述不断的“调整”方法,排序不等式的逆序和≤乱序和≤顺序和则易证。不等式等号在时成立。
二、能通过排序不等式推导出的结论
1、通过上述推导,我们来使用同样的方式来证明下面这个不等式
有两个有序数组:则有
同样的,我们也先来证明一下2元的该不等式是否成立
设 证
∵均大于0,则两式相比≥ 1则该不等式成立.
即∴该不等式成立
类似地对于乱序乘方则有
该不等式也可通过类似的“调整方式”来证明其成立.不难看出,对于任何一种乱序和或顺序和总有一种调整性序可以达到目的。不等式等号在时成立。
2、证明:
由
则原不等式转换为证明
由排序不等式显然能证明上述结论成立。等号在a=b=c时成立。
三、利用排序不等式来证明切比雪夫不等式
设则有
对于中间一项我们不难看出其为n个乱序和的平均数
而对于乱序和总有逆序和乱序和
顺序和
该不等式不难得证。不等式等号在时成立。
如有错误,感谢指出。
如有补充,欢迎私言作者修改。