排序不等式:(Discrete mathematics and its applications第6版习题)
(图片取自百度百科)
证明
数学归纳法:
当
n
=
1
时
显
然
成
立
假
设
当
n
=
k
(
k
≥
2
,
k
∈
N
+
)
成
立
,
则
n
=
k
+
1
时
,
由
定
义
有
a
k
+
1
b
k
+
1
≥
a
i
b
j
(
i
,
j
≤
k
+
1
)
又
因
为
之
前
的
假
设
:
a
1
b
1
+
a
2
b
2
+
.
.
.
a
k
b
k
是
最
大
的
假
如
我
们
的
{
b
k
+
1
}
有
一
个
排
列
{
c
k
+
1
}
使
得
乱
序
(
非
正
序
)
乘
积
a
1
c
1
+
a
2
c
2
+
.
.
.
a
k
+
1
c
k
+
1
最
大
1
∘
若
c
k
+
1
=
b
k
+
1
,
这
时
候
应
该
有
a
1
c
1
+
a
2
c
2
+
.
.
.
a
k
c
k
=
a
1
b
1
+
a
2
b
2
+
.
.
.
a
k
b
k
即
{
a
k
+
1
b
k
+
1
}
也
是
满
足
使
乘
积
和
最
大
条
件
的
一
个
序
列
(
正
序
)
2
∘
若
c
k
+
1
=
̸
b
k
+
1
,
设
c
i
=
b
k
+
1
,
(
i
=
̸
k
+
1
且
i
∈
N
+
)
,
下
面
证
明
a
i
c
k
+
1
+
a
k
+
1
c
i
≥
a
i
c
i
+
a
k
+
1
c
k
+
1
:
(
即
把
c
i
与
c
k
+
1
互
换
)
a
i
c
k
+
1
+
a
k
+
1
c
i
−
(
a
i
c
i
+
a
k
+
1
c
k
+
1
)
=
(
a
i
−
a
k
+
1
)
(
c
k
+
1
−
c
i
)
≥
0
即
若
c
k
+
1
=
b
k
+
1
也
能
是
{
a
k
+
1
c
k
+
1
}
乘
积
最
大
结
合
1
∘
知
n
=
k
+
1
时
也
成
立
综
上
可
得
正
序
和
≥
乱
序
和
倒
序
和
≤
乱
序
和
同
理
\begin{aligned} &当n=1时显然成立\\ &假设当n=k(k\geq2,k\in N_+)成立,\\ &则n=k+1时,由定义有a_{k+1}b_{k+1}\geq a_ib_j(i,j\leq k+1)\\ &又因为之前的假设:a_1b_1+a_2b_2+...a_kb_k是最大的\\ &假如我们的\{b_{k+1}\}有一个排列\{c_{k+1}\}\\ &使得乱序(非正序)乘积a_1c_1+a_2c_2+...a_{k+1}c_{k+1}最大\\ &1^\circ若c_{k+1}=b_{k+1},这时候应该有\\ &a_1c_1+a_2c_2+...a_kc_k=a_1b_1+a_2b_2+...a_kb_k\\ &即\{a_{k+1}b_{k+1}\}也是满足使乘积和最大条件的一个序列(正序)\\ \\ &2^\circ 若c_{k+1}=\not b_{k+1},设c_i=b_{k+1},(i=\not k+1且i\in N_+),\\ &下面证明a_ic_{k+1}+a_{k+1}c_i\geq a_ic_i+a_{k+1}c_{k+1}:\\ &(即把c_i与c_{k+1}互换)\\ &a_ic_{k+1}+a_{k+1}c_i- (a_ic_i+a_{k+1}c_{k+1})=\\ &(a_i-a_{k+1})(c_{k+1}-c_i)\geq 0\\ &即若c_{k+1}=b_{k+1}也能是\{a_{k+1}c_{k+1}\}乘积最大\\ &结合1^\circ知n=k+1时也成立\\ &综上可得正序和\geq乱序和\\ &倒序和\leq乱序和同理 \end{aligned}
当n=1时显然成立假设当n=k(k≥2,k∈N+)成立,则n=k+1时,由定义有ak+1bk+1≥aibj(i,j≤k+1)又因为之前的假设:a1b1+a2b2+...akbk是最大的假如我们的{bk+1}有一个排列{ck+1}使得乱序(非正序)乘积a1c1+a2c2+...ak+1ck+1最大1∘若ck+1=bk+1,这时候应该有a1c1+a2c2+...akck=a1b1+a2b2+...akbk即{ak+1bk+1}也是满足使乘积和最大条件的一个序列(正序)2∘若ck+1≠bk+1,设ci=bk+1,(i≠k+1且i∈N+),下面证明aick+1+ak+1ci≥aici+ak+1ck+1:(即把ci与ck+1互换)aick+1+ak+1ci−(aici+ak+1ck+1)=(ai−ak+1)(ck+1−ci)≥0即若ck+1=bk+1也能是{ak+1ck+1}乘积最大结合1∘知n=k+1时也成立综上可得正序和≥乱序和倒序和≤乱序和同理
阿贝尔变换:(把求和变成另外一种容易比较大小的形式)
(图片来自百度百科)