排序不等式的两种证明方法

排序不等式:(Discrete mathematics and its applications第6版习题)
1(图片取自百度百科)
证明
数学归纳法:
当 n = 1 时 显 然 成 立 假 设 当 n = k ( k ≥ 2 , k ∈ N + ) 成 立 , 则 n = k + 1 时 , 由 定 义 有 a k + 1 b k + 1 ≥ a i b j ( i , j ≤ k + 1 ) 又 因 为 之 前 的 假 设 : a 1 b 1 + a 2 b 2 + . . . a k b k 是 最 大 的 假 如 我 们 的 { b k + 1 } 有 一 个 排 列 { c k + 1 } 使 得 乱 序 ( 非 正 序 ) 乘 积 a 1 c 1 + a 2 c 2 + . . . a k + 1 c k + 1 最 大 1 ∘ 若 c k + 1 = b k + 1 , 这 时 候 应 该 有 a 1 c 1 + a 2 c 2 + . . . a k c k = a 1 b 1 + a 2 b 2 + . . . a k b k 即 { a k + 1 b k + 1 } 也 是 满 足 使 乘 积 和 最 大 条 件 的 一 个 序 列 ( 正 序 ) 2 ∘ 若 c k + 1 = ̸ b k + 1 , 设 c i = b k + 1 , ( i = ̸ k + 1 且 i ∈ N + ) , 下 面 证 明 a i c k + 1 + a k + 1 c i ≥ a i c i + a k + 1 c k + 1 : ( 即 把 c i 与 c k + 1 互 换 ) a i c k + 1 + a k + 1 c i − ( a i c i + a k + 1 c k + 1 ) = ( a i − a k + 1 ) ( c k + 1 − c i ) ≥ 0 即 若 c k + 1 = b k + 1 也 能 是 { a k + 1 c k + 1 } 乘 积 最 大 结 合 1 ∘ 知 n = k + 1 时 也 成 立 综 上 可 得 正 序 和 ≥ 乱 序 和 倒 序 和 ≤ 乱 序 和 同 理 \begin{aligned} &当n=1时显然成立\\ &假设当n=k(k\geq2,k\in N_+)成立,\\ &则n=k+1时,由定义有a_{k+1}b_{k+1}\geq a_ib_j(i,j\leq k+1)\\ &又因为之前的假设:a_1b_1+a_2b_2+...a_kb_k是最大的\\ &假如我们的\{b_{k+1}\}有一个排列\{c_{k+1}\}\\ &使得乱序(非正序)乘积a_1c_1+a_2c_2+...a_{k+1}c_{k+1}最大\\ &1^\circ若c_{k+1}=b_{k+1},这时候应该有\\ &a_1c_1+a_2c_2+...a_kc_k=a_1b_1+a_2b_2+...a_kb_k\\ &即\{a_{k+1}b_{k+1}\}也是满足使乘积和最大条件的一个序列(正序)\\ \\ &2^\circ 若c_{k+1}=\not b_{k+1},设c_i=b_{k+1},(i=\not k+1且i\in N_+),\\ &下面证明a_ic_{k+1}+a_{k+1}c_i\geq a_ic_i+a_{k+1}c_{k+1}:\\ &(即把c_i与c_{k+1}互换)\\ &a_ic_{k+1}+a_{k+1}c_i- (a_ic_i+a_{k+1}c_{k+1})=\\ &(a_i-a_{k+1})(c_{k+1}-c_i)\geq 0\\ &即若c_{k+1}=b_{k+1}也能是\{a_{k+1}c_{k+1}\}乘积最大\\ &结合1^\circ知n=k+1时也成立\\ &综上可得正序和\geq乱序和\\ &倒序和\leq乱序和同理 \end{aligned} n=1n=k(k2,kN+)n=k+1ak+1bk+1aibj(i,jk+1):a1b1+a2b2+...akbk{bk+1}{ck+1}使a1c1+a2c2+...ak+1ck+11ck+1=bk+1a1c1+a2c2+...akck=a1b1+a2b2+...akbk{ak+1bk+1}使2ck+1≠bk+1ci=bk+1,(i≠k+1iN+)aick+1+ak+1ciaici+ak+1ck+1(cick+1)aick+1+ak+1ci(aici+ak+1ck+1)=(aiak+1)(ck+1ci)0ck+1=bk+1{ak+1ck+1}1n=k+1

阿贝尔变换:(把求和变成另外一种容易比较大小的形式)
2(图片来自百度百科)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值