1 题目描述
设计一个算法,找出数组中最小的k个数。以任意顺序返回这k个数均可。
示例:
输入: arr = [1,3,5,7,2,4,6,8], k = 4
输出: [1,2,3,4]提示:
0 <= len(arr) <= 100000
0 <= k <= min(100000, len(arr))
这个题如果用普通的排序操作其实很简单,直接用冒泡把所有数字从小到大排序就行,但如果数据量很大呢,大到内存存不下的话,就会导致冒泡这类排序的时间复杂度太大导致无法实现。
这时我们就需要利用到堆。
2 解题思路
假如给了一个N个元素大的数组,需要去取得这个数组里面的前5个最小的数。
这时候我们可以将arr内前五个元素取出来去建立一个大堆,因为要取前几个最小的数,所以我们建一个大根堆。
通过循环向下调整算法去将它调整为大根堆。
void AdjustDown(int *a,int k,int root)
{
int parent=root;
int child=parent*2+1;
while(child<k)
{
if(child+1<k&&a[child]<a[child+1])
{
child++;
}
if(a[child]>a[parent])
{
int temp=a[parent];
a[parent]=a[child];
a[child]=temp;
parent=child;
child=parent*2+1;
}
else
{
break;
}
}
}
然后再将数组中后面没用来建堆的数来和大堆的头去比较,小于堆顶的直接入堆。
然后在进行向下调整。
这样我们就把小的数字放到最下面,重复这个步骤就能把这N个最小的数字给放到这个堆里面去。
3 完整代码
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
void AdjustDown(int *a,int k,int root)
{
int parent=root;
int child=parent*2+1;
while(child<k)
{
if(child+1<k&&a[child]<a[child+1])
{
child++;
}
if(a[child]>a[parent])
{
int temp=a[parent];
a[parent]=a[child];
a[child]=temp;
parent=child;
child=parent*2+1;
}
else
{
break;
}
}
}
int* smallestK(int* arr, int arrSize, int k, int* returnSize){
*returnSize=k;
if(k==0) return NULL;
int *a=(int*)malloc(sizeof(int)*k);
memcpy(a,arr,sizeof(int)*k);
for(int i=(k-1-1)/2;i>=0;i--)
{
AdjustDown(a,k,i);
}
for(int i=k;i<arrSize;i++)
{
if(a[0]>arr[i])
{
a[0]=arr[i];
AdjustDown(a,k,0);
}
}
return a;
}