最小k个数

力扣(LeetCode)----前k个最小数

1 题目描述

设计一个算法,找出数组中最小的k个数。以任意顺序返回这k个数均可。

示例:

输入: arr = [1,3,5,7,2,4,6,8], k = 4
输出: [1,2,3,4]

提示:

  • 0 <= len(arr) <= 100000

  • 0 <= k <= min(100000, len(arr))

这个题如果用普通的排序操作其实很简单,直接用冒泡把所有数字从小到大排序就行,但如果数据量很大呢,大到内存存不下的话,就会导致冒泡这类排序的时间复杂度太大导致无法实现。

这时我们就需要利用到堆。

2 解题思路

 

假如给了一个N个元素大的数组,需要去取得这个数组里面的前5个最小的数。

这时候我们可以将arr内前五个元素取出来去建立一个大堆,因为要取前几个最小的数,所以我们建一个大根堆。

通过循环向下调整算法去将它调整为大根堆。


void AdjustDown(int *a,int k,int root)
{
    int parent=root;
    int child=parent*2+1;
    while(child<k)
    {
        if(child+1<k&&a[child]<a[child+1])
        {
            child++;
        }
        if(a[child]>a[parent])
        {

            int temp=a[parent];
            a[parent]=a[child];
            a[child]=temp;

            parent=child;
            child=parent*2+1;
        }
        else
        {
            break;
        }
    }
}

然后再将数组中后面没用来建堆的数来和大堆的头去比较,小于堆顶的直接入堆。

然后在进行向下调整。

这样我们就把小的数字放到最下面,重复这个步骤就能把这N个最小的数字给放到这个堆里面去。

3 完整代码



/**
 * Note: The returned array must be malloced, assume caller calls free().
 */

void AdjustDown(int *a,int k,int root)
{
    int parent=root;
    int child=parent*2+1;
    while(child<k)
    {
        if(child+1<k&&a[child]<a[child+1])
        {
            child++;
        }
        if(a[child]>a[parent])
        {

            int temp=a[parent];
            a[parent]=a[child];
            a[child]=temp;

            parent=child;
            child=parent*2+1;
        }
        else
        {
            break;
        }
    }
}

int* smallestK(int* arr, int arrSize, int k, int* returnSize){
    *returnSize=k;
    if(k==0) return NULL;

    int *a=(int*)malloc(sizeof(int)*k);
    memcpy(a,arr,sizeof(int)*k);
	for(int i=(k-1-1)/2;i>=0;i--)
    {
        AdjustDown(a,k,i);
    }
    
    for(int i=k;i<arrSize;i++)
    {
        if(a[0]>arr[i])
        {
            a[0]=arr[i];
            AdjustDown(a,k,0);
        }
    }
    return a;
}

C语言中,找到一组整数中的最小k个数可以采用多种算法实现,其中一种常见的方法是使用优先队列(通常称为堆),特别是大顶堆(Max Heap)。这里提供一个简单的示例,使用大顶堆结构: ```c #include <stdio.h> #include <stdlib.h> // 定义一个数组大小 #define MAX_SIZE 100 // 结构体表示堆节点,包含值和索引 typedef struct { int value; int index; } MinHeapNode; // 大顶堆实现,用于存储前k小的元素 void max_heapify(int arr[], int n, int i) { int largest = i; // 初始化最大值位置为根节点 int left = 2 * i + 1; // 左孩子 int right = 2 * i + 2; // 右孩子 if (left < n && arr[left] > arr[largest]) { largest = left; } if (right < n && arr[right] > arr[largest]) { largest = right; } if (largest != i) { // 如果有更大值 swap(&arr[i], &arr[largest]); // 交换 max_heapify(arr, n, largest); // 递归调整子树 } } // 建立大顶堆 void build_max_heap(int arr[], int k) { for (int i = k / 2 - 1; i >= 0; i--) { max_heapify(arr, k, i); } } // 添加新元素到堆并保持堆性质 void insert(int arr[], int n, int k, int new_val, int new_index) { arr[n++] = new_val; // 添加新元素 max_heapify(arr, k, n - 1); // 调整以保持堆 } // 获取最小k个数 void get_min_k(int arr[], int k) { printf("The smallest %d numbers are:\n", k); for (int i = 0; i < k; i++) { printf("%d ", arr[0]); swap(&arr[0], &arr[k - 1]); // 将当前堆顶移到末尾 max_heapify(arr, k - 1, 0); // 更新堆 } } // 主函数示例 int main() { int arr[] = {9, 8, 7, 6, 5, 4, 3, 2, 1}; int n = sizeof(arr) / sizeof(arr[0]), k = 3; build_max_heap(arr, k); // 创建初始堆 // 假设我们有新元素插入 insert(arr, n, k, 100, 10); // 新元素:100, 索引:10 get_min_k(arr, k); // 输出前k小数 return 0; } ``` 在这个例子中,`build_max_heap()`函数建立了一个大顶堆,`insert()`函数用于添加新元素并维护堆属性,`get_min_k()`函数则从堆中获取并删除最小的k个元素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值