A sequence of integer {an} can be expressed as:
Now there are two integers n and m. I'm a pretty girl. I want to find all b1,b2,b3 ... bp,that 1≤bi≤n and bi is relatively-prime with the integer m. And then calculate:
But I have no time to solve this problem because I am going to date my boyfriend soon. So can you help me?
代码:
#include <iostream>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
int pri[50],idx;
ll ksm(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1) res=(ll)res*a%mod;
a=(ll)a*a%mod;
b>>=1;
}
return res;
}
ll mul(ll a,ll b)
{
a%=mod,b%=mod;
return a*b%mod;
}
void divide(int k)
{
for(int i=2;i<=k/i;i++)
{
if(k%i==0){
pri[idx++]=i;
while(k%i==0) k/=i;
}
}
if(k!=1) pri[idx++]=k;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int n,m;
while(cin>>n>>m){
idx=0;
divide(m);
ll inv2=ksm(2,mod-2),inv6=ksm(6,mod-2);
ll ans=(mul(n,n+1)*inv2%mod+mul(mul(n,n+1),2*n+1)*inv6%mod)%mod;
for(int i=1;i<(1<<idx);i++)
{
int s=0;
ll t=1;
for(int j=0;j<idx;j++)
{
if(i >> j&1)
{
if(t*pri[j]>n)
{
t=-1;
break;
}
t*=pri[j];
s++;
}
}
if(t!=-1)
{ ll cnt=n/t;
if(s%2) ans-=(t*mul(cnt,cnt+1)%mod*inv2%mod+t*t%mod*mul(mul(cnt,cnt+1),2*cnt+1)%mod*inv6%mod)%mod;
else ans+=(t*mul(cnt,cnt+1)%mod*inv2%mod+t*t%mod*mul(mul(cnt,cnt+1),2*cnt+1)%mod*inv6%mod)%mod;
if(ans<0) ans=ans+mod;
}
}
cout<<(ans+mod)%mod<<'\n';
}
return 0;
}