题目描述
粉兔 AK 了 IOI,决定女装来庆祝一下!
粉兔邀请了 N 个同学一参加她的女装盛宴!他们所在的城市可以看成一个二维平面,第 i个同学的家位于 (xi,yi)。每个同学都从家里出发,赶往聚会地点。由于城市只有南北走向和东西的街道,所以他们能沿着与坐标轴平行的直线走。第 i 个同学走一个单位长度需要时间 。粉兔希望他们快点赶到,所以她想找一个聚会地点,使得所有人到这个地点的时间之和最短 。
时间紧迫,请你求出最短的总时间 。输入
第一行,一个正整数 N。
下面 N 行,每行三个整数 xi,yi和 ti。输出
输出一个数,表示最短的总时间。
注意:你可能需要考虑时间是否一定是整数。样例输入 Copy
4 1 2 3 2 3 2 -1 2 5 1 -6 1样例输出 Copy
22提示
可以把地点选在 (1,2)。
第 1 个同学 :3×(|1−1|+|2−2|)=0;
第 2 个同学: 2×(|2−1|+|3−2|)=4;
第 3 个同学:5×(|−1−1|+|2−2|)=10;
第 4 个同学:1×(|1−1|+|−6−2|)=8;
总时间为 0+4+10+8=22。
可以证明没有更优的方案。
对于 100%的数据, N≤200000,0<ti≤100,∣xi,yi∣≤10^9。
思路:
对于一个点集,每个点到x点距离之和最小,x为点集的中位数。此题x,y相互独立可分别求。
i号单位长度花费t时间,可视为t个在i号位置花费1时间。
求距离之和不用求出中位数,双指针求两端点距离即可。
Code:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<unordered_map>
using namespace std;
#define x first
#define y second
#define PII pair<int,int>
#define V vector<int>
#define endl "\n"
#define init(a) memset(a,0,sizeof a)
typedef long long ll;
typedef unsigned long long llu;
const int INF=0x3f3f3f3f;
const int N=2e5+10;
struct people
{
int x,y,t;
}a[N];
int cnt[N];
bool cmpx(people n,people m)
{
return n.x<m.x;
}
bool cmpy(people n,people m)
{
return n.y<m.y;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i].x>>a[i].y>>a[i].t;
}
ll res=0;
sort(a+1,a+n+1,cmpx);
for(int i=1;i<=n;i++) cnt[i]=a[i].t;
int l=1,r=n;
while(l<r) //中位数
{
res+=(ll)a[r].x-a[l].x; //两端距离
cnt[r]--;
cnt[l]--;
if(!cnt[r]) r--;
if(!cnt[l]) l++;
}
sort(a+1,a+n+1,cmpy);
for(int i=1;i<=n;i++) cnt[i]=a[i].t;
l=1,r=n;
while(l<r)
{
res+=(ll)a[r].y-a[l].y;
cnt[r]--;
cnt[l]--;
if(!cnt[r]) r--;
if(!cnt[l]) l++;
}
cout<<res;
return 0;
}