自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(1219)
  • 收藏
  • 关注

原创 《YOLO11魔术师专栏》专栏介绍 & 专栏目录

【原创自研模块】【多组合点优化】【注意力机制】【主干篇】【neck优化】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】

2024-10-12 13:19:28 4340 32

原创 《YOLOv10魔术师专栏》专栏介绍 & 专栏目录

《YOLOv10魔术师专栏》专栏介绍 & 专栏目录

2024-06-03 10:46:41 7384 8

原创 《YOLOv9魔术师专栏》专栏介绍 & 专栏目录

《YOLOv9魔术师专栏》专栏介绍

2024-03-28 12:44:06 4745 11

原创 《YOLOv8原创自研》专栏介绍 & CSDN独家改进创新实战&专栏目录

全网独家首发创新(原创),适合paper !!!

2023-12-02 14:54:59 9052 16

原创 《YOLOv5原创自研》专栏介绍 & CSDN独家改进创新实战&专栏目录

全网独家首发创新(原创),适合paper !!!

2023-12-02 14:54:43 2873 2

原创 《YOLOv7原创自研》专栏介绍 & CSDN独家改进创新实战&专栏目录

全网独家首发创新(原创),适合paper !!!

2023-12-02 14:54:28 2271

原创 《RT-DETR魔术师》专栏介绍 & CSDN独家改进创新实战 & 专栏目录

通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、neck、loss等)进行魔改,实现创新!!!

2023-11-14 20:54:20 5155 24

原创 《YOLOv8-Pose关键点检测》专栏介绍 & CSDN独家改进创新实战 & 专栏目录

YOLOv8-Pose关键点检测:1)手把手从数据集标注、训练到模型的教程;2)模型轻量化创新;3)loss优化教程

2023-11-02 09:19:27 5382 18

原创 《YOLOv7高阶自研》专栏介绍 & CSDN独家改进创新实战& 专栏目录

​YOLOv7高阶自研专栏介绍:1)前沿最新计算机顶会复现;2)YOLOv7自研创新结合,轻松搞定科研;3)持续更新中,定期更新不同数据集涨点情况​

2023-10-12 20:32:20 1968 30

原创 《深度学习工业缺陷检测》专栏介绍 & CSDN独家改进实战

深度学习工业缺陷检测:1)提供工业小缺陷检测性能提升方案,满足部署条件;2)针对缺陷样品少等难点,引入无监督检测;3)深度学习 C++、C#部署方案;4)实战工业缺陷检测项目,学习如何选择合适的框架和模型;

2023-09-22 21:05:56 4748 25

原创 《YOLO小目标检测》专栏介绍 & CSDN独家改进创新实战&专栏目录

分析小目标现状和难点,提出解决方案提升小目标检测精度。

2023-08-21 19:48:08 6310 14

原创 《YOLOv5/YOLOv7魔术师》专栏介绍 & CSDN独家改进创新实战&专栏目录

YOLOv5/YOLOv7魔术师,独家首发创新(原创),持续更新,适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络

2023-07-04 21:56:18 2474 3

原创 《YOLOv8魔术师》专栏介绍 & CSDN独家改进创新实战&专栏目录

Yolov8魔术师,独家首发创新(原创),持续更新,适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络

2023-07-03 20:19:51 10665 7

原创 YOLOv5涨点优化:单图像超分辨率 | 空间频率注意力和通道转置注意力,恢复高频细节 | IJCAI-24

如何使用:1)结合C3二次创新使用

2025-02-07 17:29:24 6

原创 YOLOv5涨点优化:轻量化注意力 | 单头注意力模块,并行结合全局和局部信息提高准确度| SHViT CVPR2024

如何使用:1)SHSABlock加入backbone使用;2)和C3结合二次创新;

2025-02-07 17:04:31 6

原创 YOLOv10优化:大型条带卷积技术,更有效地提取空间信息 | Strip R-CNN,遥感目标检测 新SOTA,25年最新发表

大型条带卷积是遥感目标检测中极为有效的特征学习工具,能够精准捕捉并检测出不同长宽比的目标

2025-02-06 16:30:10 123

原创 YOLOv9优化:大型条带卷积技术,更有效地提取空间信息 | Strip R-CNN,遥感目标检测 新SOTA,25年最新发表

大型条带卷积是遥感目标检测中极为有效的特征学习工具,能够精准捕捉并检测出不同长宽比的目标。

2025-02-06 16:29:49 15

原创 YOLOv10涨点优化:自研检测头 | 原创自研 | 独家创新(一种新颖的风车形卷积PConv)检测头结构创新,实现涨点 | AAAI 2025

对现有v10Detect进行二次创新,引入一种新颖的风车形卷积(PConv)

2025-02-06 16:29:16 22

原创 YOLO11优化:大型条带卷积技术,更有效地提取空间信息 | Strip R-CNN,遥感目标检测 新SOTA,25年最新发表

大型条带卷积是遥感目标检测中极为有效的特征学习工具,能够精准捕捉并检测出不同长宽比的目标。

2025-02-06 14:58:38 409

原创 YOLOv8优化:大型条带卷积技术,更有效地提取空间信息 | Strip R-CNN,遥感目标检测 新SOTA,25年最新发表

StripBlock采用了序列正交的大型条带卷积技术,以更有效地提取空间信息

2025-02-06 14:58:14 25

原创 YOLOv8优化:原创自研 | 独家创新(一种新颖的风车形卷积PConv)检测头结构创新,实现涨点 | AAAI 2025

对现有v8Detect进行二次创新,提升检测精度,独家创新(PConv_v8Detect)检测头结构创新,适合科研创新度十足,强烈推荐

2025-02-05 13:33:12 29

原创 YOLO11涨点优化:自研检测头 | 原创自研 | 独家创新(一种新颖的风车形卷积PConv)检测头结构创新,实现涨点 | AAAI 2025

对现有11Detect进行二次创新,提升检测精度,独家创新(PConv_11Detect)检测头结构创新,适合科研创新度十足,强烈推荐

2025-02-05 13:28:00 325

原创 RT-DETR改进:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力

提出了一种基于尺度的动态(SD)损失,它根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力。

2025-01-24 10:31:54 49

原创 RT-DETR算法优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野

提出了一种新颖的风车形卷积(PConv)作为骨干网络下层标准卷积的替代品。PConv能更好地符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野,且只引入最小的参数增加。

2025-01-24 10:17:27 152

原创 RT-DETR算法优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力

提出了一种基于Transformer的盲点网络(TBSN)架构,通过分析和重新设计Transformer运算符以满足盲点要求

2025-01-24 10:17:01 30

原创 基于YOLO11的包裹分割检测(5):新颖的多尺度卷积注意力(MSCA),即插即用,助力分割

多尺度卷积注意力  |   亲测在包裹分割检测数据集上涨点,原始Mask mAP50  0.926提升至0.936

2025-01-23 09:14:20 41

原创 基于YOLO11的包裹分割检测(4):具有切片操作的SimAM注意力,魔改SimAM助力分割

魔改SimAM注意力  |   亲测在包裹分割检测数据集上涨点,原始Mask mAP50  0.926提升至0.932

2025-01-23 09:06:12 22

原创 【博客之星】| YOLO算法2024年前沿技术洞察和对科研、垂直行业深度思考

2024年度个人发展、YOLO系列算法总结

2025-01-22 13:11:44 2084 3

原创 基于YOLO11的包裹分割检测(3): 全局到局部可控感受野模块GL-CRM ,量身为为多尺度变化而设计

全局到局部可控感受野模块GL-CRM  |   亲测在包裹分割检测数据集上涨点,原始Mask mAP50  0.926提升至0.934

2025-01-22 12:56:48 24

原创 基于YOLO11的包裹分割检测(2):空间频率注意力和通道转置注意力 ,恢复分割边缘细节| IJCAI-24

通道转置注意力(CTA)  |   亲测在包裹分割检测数据集上涨点,原始Mask mAP50  0.926提升至0.94

2025-01-22 12:56:31 27

原创 基于YOLO11的包裹分割检测(1):单头注意力模块,并行结合全局和局部信息提升分割能力

单头注意力模块  |   亲测在包裹分割检测数据集上涨点,原始Mask mAP50  0.926提升至0.929

2025-01-22 12:56:09 22

原创 基于YOLO11的农业玉米雄蕊精准定位系统(Python源码+数据集+Pyside6界面)

基于YOLO11的农业玉米雄蕊精准定位系统,阐述了整个数据制作和训练可视化过程

2025-01-21 08:44:27 835

原创 YOLOv10全网首发优化:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力

较小的目标在BBox标签的Sloss中获得较低的关注权重。掩码标签可以提高检测精度,特别是对于较小或形状不规则的目标

2025-01-20 13:28:53 48

原创 YOLOv9全网首发优化:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力

根据目标尺度动态调整Sloss和Lloss的影响系数,以减少标签不准确对损失函数稳定性的影响。较小的目标在BBox标签的Sloss中获得较低的关注权重。掩码标签可以提高检测精度,特别是对于较小或形状不规则的目标

2025-01-20 13:28:26 22

原创 YOLOv8全网首发优化:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力

 提出了一种基于尺度的动态(SD)损失,它根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力。

2025-01-20 13:06:54 58

原创 YOLO11全网首发优化:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力

根据目标尺度动态调整Sloss和Lloss的影响系数,以减少标签不准确对损失函数稳定性的影响。较小的目标在BBox标签的Sloss中获得较低的关注权重。掩码标签可以提高检测精度,特别是对于较小或形状不规则的目标

2025-01-20 13:06:17 201

原创 YOLOv10全网首发优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野

一种新颖的风车形卷积(PConv)在IRSTD-1K和sist - uavb数据集上实现了显着的性能改进,验证了我们方法的有效性和可泛化性

2025-01-17 16:59:38 404 3

原创 YOLO11全网首发优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野

我们提出了一种新颖的风车形卷积(PConv)作为骨干网络下层标准卷积的替代品。PConv能更好地符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野,且只引入最小的参数增加。

2025-01-17 16:49:19 398

原创 YOLOv8全网首发优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野

我们提出了一种新颖的风车形卷积(PConv)作为骨干网络下层标准卷积的替代品。PConv能更好地符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野,且只引入最小的参数增加。

2025-01-17 16:49:06 236

原创 YOLOv10优化:图像去噪 | Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力 | AAAI2025

如何使用:1)结合C2f二次创新使用;

2025-01-14 09:28:59 146

基于YOLO的轴承生产缺陷检测,数据集大小568张,类别三类

基于YOLO11的轴承生产缺陷智能检测系统,阐述了整个数据制作和训练可视化过程

2024-11-15

GC10-DET,用于训练YOLO11、YOLOv10、YOLOv8、YOLOv5等

数据集大小:训练集1833,验证集459张

2024-11-13

NEU-DET,用于训练yolov10、yolov8、yolov5等

NEU-DET,用于训练yolov10、yolov8、yolov5等

2024-10-05

基于Yolov8的道路破损检测,包括训练数据集、训练好的模型和可视化结果

python

2024-10-05

windows下成功编译dcnv4环境

windows下成功编译dcnv4环境,可供yolov5、yolov7、yolov8、yolov9、yolov10直接使用。 可下载txt,内涵下载地址

2024-06-18

基于YOLOv8的摔倒行为检测系统(Python源码+Pyqt6界面)

主要内容:通过实战基于YOLOv8的摔倒行为检测算法,从数据集制作到模型训练,最后设计成为检测UI界面

2024-06-18

基于YOLOv8的摄像头吸烟行为检测系统

摄像头吸烟行为检测系统设计 如何运行:python main.py

2024-06-18

基于YOLOv8的足球赛环境下足球目标检测系统

1)详细介绍了足球赛环境下足球目标检测系统,在介绍算法原理的同时,给出Pytorch的源码、训练数据集; 2)数据集大小一共2724张,,按照8:1:1进行训练集、验证集、测试集随机区分。 一共只有一个类别,为football

2024-06-18

基于Yolov8的中国交通标志(CCTSDB)识别检测系统

1)转换成yolo txt格式的数据集; 2) 开箱即用的CCTSDB yolov8源码;

2023-09-30

基于YOLOV8的注意力机制源代码获取,开箱即用

注意力机制包括: 1.CBAM; 2.GAM; 3.ResBlock_CBAM; ​4.Triplet注意力; 5. ShuffleAttention; 6.ECA; 7.SENet; 8. EffectiveSE; ​​9. GCNet; 10.GENet; 11.BAM;

2023-08-19

道路图像检测坑洼,数据集大小665张,缺陷类型:pothole

道路图像检测坑洼,数据集大小665张,缺陷类型:pothole

2023-06-11

铝片缺陷数据集,数据集大小1400张,缺陷类型一共四种:zhen-kong、ca-shang、 zang-wu、 zhe-zho

铝片缺陷数据集,缺陷类型(针孔、擦伤、脏污、褶皱)

2023-06-09

手机背板工业质检瑕疵分割数据集,包含3类目标和1类背景,总共4类 数据集大小864张

手机背板工业质检瑕疵分割数据集,包含3类目标和1类背景,总共4类。数据集大小864张

2023-05-13

工业表面缺陷检测,数据集大小1400张

工业表面缺陷检测,数据集大小1400张:缺陷类型一共四种:zhen_kong、ca_shang、zang_wu、zhe_zhou;

2023-05-13

DCNV3编译环境,包括整个yolo环境

用于运行DCNV3的环境,可在yolov5、yolov7、yolov8下直接使用

2023-05-11

红外小目标飞机检测数据集

train: ./data/VOC2007/train.txt # 16551 images val: ./data/VOC2007/test.txt # 4952 images # number of classes nc: 1 # class names names: ['air']

2023-05-07

基于yolov5的红外小目标飞机识别

1)yolov5整个工程 2)VOC格式的红外小目标飞机数据集 3)训练得到的模型以及run整个训练可视化过程

2023-04-30

基于yolov5的二维码识别

1)整个yolov5模型 2)二维码数据集 3)二维码训练得到的模型 4)模型转成onnx格式,在opencv dnn下调用 5)二维码检测识别程序

2023-04-30

基于分割的工业划痕质检数据集

本数据集为划痕质检数据集,利用本数据集的划痕标注信息可以用于工业划痕质检相关的项目;在本数据集中,JPEGImages中为划痕数据图片,gray_label中为灰度标注图 , pre_encoded中为彩色标注图,train.txt为标注训练集的文件,val.txt为标注验证集的文件。

2023-04-30

yolov1、yolov2、yolov3、yolov4、yolov5、yolov6、yolov7等论文

各论文如下: 1)You Only Look Once:Unified, Real-Time Object Detection; 2)YOLO9000:Better, Faster, Stronger; 3)YOLOv3: An Incremental Improvement; 4)YOLOv4: Optimal Speed and Accuracy of Object Detection; 5)You Only Look One-level Feature; 6)DetectoRS: Detecting Objects with Recursive Feature; 7)YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications; 8)YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors;

2023-04-28

二维码数据集,数据集大小1085张

基于yolov5的二维码识别,项目见https://cv2023.blog.csdn.net/article/details/129961688

2023-04-28

玻璃瓶缺陷检测,缺陷类型:cap,数据集数量:125张

基于yolov5的玻璃瓶缺陷检测算法以及优化见博客:https://mp.csdn.net/mp_blog/creation/editor/129821714

2023-04-28

三星油污缺陷类别:头发丝和小黑点, 数据集大小:660张

三星油污缺陷类别:头发丝和小黑点,["TFS","XZW"] ,数据集大小:660张 通过博客优化提升检测精度,https://mp.csdn.net/mp_blog/creation/editor/129850213

2023-04-28

pyqt+yolov5+pcb缺陷检测

pyqt+yolov5+pcb缺陷检测,登入界面+支持图像视频检测整体为YoloV5的代码 ui文件夹中存放ui的py文件和原件,便于使用与更改 ui_img存放ui使用的图像文件 utils中添加了一个用户账户工具id_utils.py detect_logical.py是检测界面的逻辑代码 main_logic.py是主界面的逻辑代码 userinfo.csv存放用户账号id信息

2023-04-01

yolov5 tensorrt c++部署

1.通过yolov5转换成.enigne进行c++预测; 2.tensorrt相比较于onnxruntime等其他方式具备推理速度快的优势;

2023-03-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除