自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1782)
  • 收藏
  • 关注

原创 YOLO26 魔术师专栏|全网独家首发!2026 原创级创新赋能 CV 全场景

基于 YOLO26 核心架构迭代,融合原创自研、2026 AAAI/CVPR/ICCV 顶会前沿成果,打造更高效、更灵活、更具创新性的计算机视觉解决方案!

2026-01-22 09:33:06 1179 5

原创 《YOLOv12魔术师专栏》专栏介绍 & 专栏目录

《YOLOv12魔术师专栏》专栏介绍 & 专栏目录

2025-03-05 14:15:44 4337 6

原创 《YOLO11魔术师专栏》专栏介绍 & 专栏目录

【原创自研模块】【多组合点优化】【注意力机制】【主干篇】【neck优化】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】

2024-10-12 13:19:28 11340 34

原创 《YOLOv10魔术师专栏》专栏介绍 & 专栏目录

《YOLOv10魔术师专栏》专栏介绍 & 专栏目录

2024-06-03 10:46:41 9211 9

原创 《YOLOv9魔术师专栏》专栏介绍 & 专栏目录

《YOLOv9魔术师专栏》专栏介绍

2024-03-28 12:44:06 5505 11

原创 《YOLOv8原创自研》专栏介绍 & CSDN独家改进创新实战&专栏目录

全网独家首发创新(原创),适合paper !!!

2023-12-02 14:54:59 12165 16

原创 《RT-DETR魔术师》专栏介绍 & CSDN独家改进创新实战 & 专栏目录

通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、neck、loss等)进行魔改,实现创新!!!

2023-11-14 20:54:20 6518 26

原创 《YOLOv8-Pose关键点检测》专栏介绍 & CSDN独家改进创新实战 & 专栏目录

YOLOv8-Pose关键点检测:1)手把手从数据集标注、训练到模型的教程;2)模型轻量化创新;3)loss优化教程

2023-11-02 09:19:27 7387 18

原创 《深度学习工业缺陷检测》专栏介绍 & CSDN独家改进实战

深度学习工业缺陷检测:1)提供工业小缺陷检测性能提升方案,满足部署条件;2)针对缺陷样品少等难点,引入无监督检测;3)深度学习 C++、C#部署方案;4)实战工业缺陷检测项目,学习如何选择合适的框架和模型;

2023-09-22 21:05:56 6560 25

原创 《YOLO小目标检测》专栏介绍 & CSDN独家改进创新实战&专栏目录

分析小目标现状和难点,提出解决方案提升小目标检测精度。

2023-08-21 19:48:08 9941 14

原创 YOLO26优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力

如何使用:1)结合C3k2二次创新使用;

2026-01-28 10:33:09 9

原创 YOLO26原创自研:特征融合创新 | 一种具有切片操作的SimAM注意力的内容引导注意力(CGA)的混合融合方案

在多个数据集实现暴力涨点,尤其适用于小目标,低对比度场景

2026-01-28 10:17:33 6

原创 YOLO26优化:遥感去雾 | 新颖的双注意力块(DAB)

如何使用:1)结合C3k2二次创新使用;2)直接双注意力块(DAB)加入;

2026-01-28 10:09:45 5

原创 YOLO26优化:单图像超分辨率 | 空间频率注意力和通道转置注意力,恢复高频细节

提取空间频率注意力和通道转置注意力,以恢复高频细节

2026-01-28 09:49:11 5

原创 YOLO26优化:轻量化注意力 | 单头注意力模块,并行结合全局和局部信息提高准确度| SHViT CVPR2024

引入了一个单头注意力模块,它固有地防止了头部冗余,同时通过并行结合全局和局部信息来提高准确性

2026-01-28 09:35:10 7

原创 YOLO26创新:检测头创新 | SEAM二次创新26Detetct,提升小目标遮挡物性能提升

SEAM二次创新11Detetct,提升小目标遮挡物性能提升

2026-01-27 16:19:58 10

原创 YOLO26原创优化:SPPF优化 | 新一代高效可形变卷积DCNv4如何做二次创新?高效结合SPPF

如何跟YOLO26结合:1) SPPF高效结合

2026-01-27 15:55:58 82

原创 YOLO26写作必备:如何测试FPS指标

如何测试改进后模型的FPS指标

2026-01-27 15:10:57 12

原创 YOLO26优化:多尺度 | 大内核和倒瓶颈设计CMUNeXt,高效提取全局上下文信息助力医学图像检测

如何使用:1)替换YOLO26 C3k2,实现二次创新,具备多尺度能力;2)直接使用CMUNeXtBlock高效涨点

2026-01-27 14:45:18 6

原创 YOLO26优化:注意力魔改 | 多尺度空洞注意力(MSDA),有效捕捉多尺度信息 | 中科院一区顶刊

多尺度空洞注意力(MSDA)采用多头的设计,在不同的头部使用不同的空洞率执行滑动窗口膨胀注意力(SWDA),创新力度十足

2026-01-27 13:49:54 10

原创 YOLO26优化:block优化 | 简单高效的模块-现代反向残差移动模块 (iRMB) | ICCV2023 EMO

提出了一种简单高效的模块——反向残差移动块(iRMB),通过堆叠不同层级的 iRMB

2026-01-27 13:41:28 10

原创 YOLO26旋转目标识别(OBB)手把手教程: 数据集标注 | 数据格式转换 | 如何训练、测试

YOLO26 OBB实现自有数据集缺陷旋转目标检测,从1)数据标记;2)数据json格式转换成适合yolo的txt格式;3)如何训练模型;

2026-01-27 13:31:50 9

原创 YOLO26数据增强 :自动生成图片以及xml文件,开箱即用

针对小样本数据集如何有效的数据增强,以及如何自动生成对应的xml文件,本文提供了多种数据增强方式,如1)Gamma变化;2)滤波类数据增强: GaussianBlur、medianBlur、blur;3)缩放类数据增强;4)翻转类数据增强;

2026-01-27 12:52:29 9

原创 YOLO26优化:多尺度 | 全局到局部可控感受野模块GL-CRM ,量身为多尺度变化而设计

全局到局部可控感受野模块GL-CRM ,量身为多尺度变化而设计

2026-01-27 12:49:22 6

原创 YOLO26创新:注意力独家魔改 | 具有切片操作的SimAM注意力,魔改SimAM助力小目标检测

魔改SimAM注意力,引入切片操作,增强小目标特征提取能力

2026-01-27 10:42:24 6

原创 YOLO26改进:注意力独家魔改 | 可变形双级路由注意力(DBRA),魔改动态稀疏注意力的双层路由方法BRA

本文改进:①加入到YOLO26的backbone、②结合C2PSA

2026-01-27 10:24:12 5

原创 YOLO26优化:IoU优化 | Unified-loU,用于高品质目标检测的统一loU

它更关注不同质量预测框之间的权重分配,该损失函数既考虑了预测盒与GT盒之间的几何关系,又考虑了IoU权值和置信度信息,充分利用了已知信息

2026-01-27 09:23:33 6

原创 YOLO26优化:KAN系列 | 「一夜干掉MLP」的KAN ,全新神经网络架构一夜爆火

如何跟YOLO26结合:KANConv结合 C3k2从而替代YOLO26的 C3k2

2026-01-27 09:07:18 7

原创 YOLO26优化:注意力魔改 | 一种新的空间和通道协同注意模块(SSCSA),充分挖掘通道和空间注意之间的协同作用

提出了一种新的空间和通道协同注意模块(SSCSA),由两部分组成:可共享的多语义空间注意(SMSA)和渐进式信道自注意(PCSA)

2026-01-26 16:50:20 12

原创 YOLO26优化:注意力魔改 | 蒙特卡罗注意力(MCAttn)模块,基于尺度变化的注意力网络

提出了一种新的基于尺度变化的注意力网络,用于小尺度目标检测分割

2026-01-26 16:43:37 10

原创 YOLO26优化:轻量化网络 | 基于特征重用和特征CSO的CAM,创新十足

通过增加基于特征重用和特征CSO的CAM,该模型在检测准确性和轻量化方面都取得了良好的效果。

2026-01-26 16:34:03 14

原创 YOLO26优化:卷积魔改 | 轻量化双卷积DualConv,完成涨点且计算量和参数量显著下降

双卷积由组卷积和异构卷积组成,执行 3×3 和 1×1 卷积运算代替其他卷积核仅执行 1×1 卷积。

2026-01-26 15:28:03 8

原创 YOLO26优化:特征融合 | 一种新颖的多尺度特征融合iAFF,适配小目标检测

在YOLO26中如何使用:iAFF加入Neck替代Concat;

2026-01-26 15:14:48 8

原创 YOLO26优化:卷积魔改 | DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 ,助力检测

如何跟YOLO26结合:1)和C3k2创新性结合

2026-01-26 14:21:00 200

原创 YOLO26优化:注意力魔改 | 通道优先卷积注意力(Channel Prior Convolutional Attention,CPCA)| 中科院 发布

采用多尺度的深度可分离卷积模块构成空间注意力,可以在通道和空间维度上动态分配注意权重。

2026-01-26 13:55:48 12

原创 YOLO26优化:卷积魔改 | 可变形条带卷积(DSCN),魔改轻量DCNv3二次创新

如何跟YOLO26结合:1)和C3k2创新性结合

2026-01-26 13:34:21 12

原创 YOLO26优化:loss优化 | SlideLoss,解决简单样本和困难样本之间的不平衡问题

SlideLoss|   亲测在多个数据集能够实现涨点,对小目标、遮挡物性能提升也能够助力涨点。

2026-01-26 13:16:23 8

原创 YOLO26优化:轻量化卷积魔改 | 新的partial convolution(PConv)结合C3k2 | CVPR2023

PConv和C3k2 结合  |   轻量化的同时在数据集并有小幅涨点;

2026-01-26 13:12:59 12

原创 YOLO26优化:小目标检测 | 多头检测器提升小目标检测精度

引入多头检测器助力YOLO26,添加一个微小物体的检测头暴力提升小目标检测性能

2026-01-26 12:36:19 21

原创 YOLO26优化:红外小目标 | 注意力机制改进 | 维度感知选择性集成模块DASI,红外小目标暴力涨点

红外小目标实现暴力涨点,只有几个像素的小目标识别率大幅度提升

2026-01-26 10:44:29 9

基于YOLO的轴承生产缺陷检测,数据集大小568张,类别三类

基于YOLO11的轴承生产缺陷智能检测系统,阐述了整个数据制作和训练可视化过程

2024-11-15

GC10-DET,用于训练YOLO11、YOLOv10、YOLOv8、YOLOv5等

数据集大小:训练集1833,验证集459张

2024-11-13

基于Yolov8的道路破损检测,包括训练数据集、训练好的模型和可视化结果

python

2024-10-05

NEU-DET,用于训练yolov10、yolov8、yolov5等

NEU-DET,用于训练yolov10、yolov8、yolov5等

2024-10-05

windows下成功编译dcnv4环境

windows下成功编译dcnv4环境,可供yolov5、yolov7、yolov8、yolov9、yolov10直接使用。 可下载txt,内涵下载地址

2024-06-18

基于YOLOv8的足球赛环境下足球目标检测系统

1)详细介绍了足球赛环境下足球目标检测系统,在介绍算法原理的同时,给出Pytorch的源码、训练数据集; 2)数据集大小一共2724张,,按照8:1:1进行训练集、验证集、测试集随机区分。 一共只有一个类别,为football

2024-06-18

基于YOLOv8的摔倒行为检测系统(Python源码+Pyqt6界面)

主要内容:通过实战基于YOLOv8的摔倒行为检测算法,从数据集制作到模型训练,最后设计成为检测UI界面

2024-06-18

基于YOLOv8的摄像头吸烟行为检测系统

摄像头吸烟行为检测系统设计 如何运行:python main.py

2024-06-18

基于Yolov8的中国交通标志(CCTSDB)识别检测系统

1)转换成yolo txt格式的数据集; 2) 开箱即用的CCTSDB yolov8源码;

2023-09-30

基于YOLOV8的注意力机制源代码获取,开箱即用

注意力机制包括: 1.CBAM; 2.GAM; 3.ResBlock_CBAM; ​4.Triplet注意力; 5. ShuffleAttention; 6.ECA; 7.SENet; 8. EffectiveSE; ​​9. GCNet; 10.GENet; 11.BAM;

2023-08-19

道路图像检测坑洼,数据集大小665张,缺陷类型:pothole

道路图像检测坑洼,数据集大小665张,缺陷类型:pothole

2023-06-11

铝片缺陷数据集,数据集大小1400张,缺陷类型一共四种:zhen-kong、ca-shang、 zang-wu、 zhe-zho

铝片缺陷数据集,缺陷类型(针孔、擦伤、脏污、褶皱)

2023-06-09

工业表面缺陷检测,数据集大小1400张

工业表面缺陷检测,数据集大小1400张:缺陷类型一共四种:zhen_kong、ca_shang、zang_wu、zhe_zhou;

2023-05-13

手机背板工业质检瑕疵分割数据集,包含3类目标和1类背景,总共4类 数据集大小864张

手机背板工业质检瑕疵分割数据集,包含3类目标和1类背景,总共4类。数据集大小864张

2023-05-13

DCNV3编译环境,包括整个yolo环境

用于运行DCNV3的环境,可在yolov5、yolov7、yolov8下直接使用

2023-05-11

红外小目标飞机检测数据集

train: ./data/VOC2007/train.txt # 16551 images val: ./data/VOC2007/test.txt # 4952 images # number of classes nc: 1 # class names names: ['air']

2023-05-07

基于yolov5的红外小目标飞机识别

1)yolov5整个工程 2)VOC格式的红外小目标飞机数据集 3)训练得到的模型以及run整个训练可视化过程

2023-04-30

基于yolov5的二维码识别

1)整个yolov5模型 2)二维码数据集 3)二维码训练得到的模型 4)模型转成onnx格式,在opencv dnn下调用 5)二维码检测识别程序

2023-04-30

基于分割的工业划痕质检数据集

本数据集为划痕质检数据集,利用本数据集的划痕标注信息可以用于工业划痕质检相关的项目;在本数据集中,JPEGImages中为划痕数据图片,gray_label中为灰度标注图 , pre_encoded中为彩色标注图,train.txt为标注训练集的文件,val.txt为标注验证集的文件。

2023-04-30

yolov1、yolov2、yolov3、yolov4、yolov5、yolov6、yolov7等论文

各论文如下: 1)You Only Look Once:Unified, Real-Time Object Detection; 2)YOLO9000:Better, Faster, Stronger; 3)YOLOv3: An Incremental Improvement; 4)YOLOv4: Optimal Speed and Accuracy of Object Detection; 5)You Only Look One-level Feature; 6)DetectoRS: Detecting Objects with Recursive Feature; 7)YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications; 8)YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors;

2023-04-28

三星油污缺陷类别:头发丝和小黑点, 数据集大小:660张

三星油污缺陷类别:头发丝和小黑点,["TFS","XZW"] ,数据集大小:660张 通过博客优化提升检测精度,https://mp.csdn.net/mp_blog/creation/editor/129850213

2023-04-28

玻璃瓶缺陷检测,缺陷类型:cap,数据集数量:125张

基于yolov5的玻璃瓶缺陷检测算法以及优化见博客:https://mp.csdn.net/mp_blog/creation/editor/129821714

2023-04-28

二维码数据集,数据集大小1085张

基于yolov5的二维码识别,项目见https://cv2023.blog.csdn.net/article/details/129961688

2023-04-28

pyqt+yolov5+pcb缺陷检测

pyqt+yolov5+pcb缺陷检测,登入界面+支持图像视频检测整体为YoloV5的代码 ui文件夹中存放ui的py文件和原件,便于使用与更改 ui_img存放ui使用的图像文件 utils中添加了一个用户账户工具id_utils.py detect_logical.py是检测界面的逻辑代码 main_logic.py是主界面的逻辑代码 userinfo.csv存放用户账号id信息

2023-04-01

yolov5 tensorrt c++部署

1.通过yolov5转换成.enigne进行c++预测; 2.tensorrt相比较于onnxruntime等其他方式具备推理速度快的优势;

2023-03-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除