- 博客(1219)
- 收藏
- 关注

原创 《YOLO11魔术师专栏》专栏介绍 & 专栏目录
【原创自研模块】【多组合点优化】【注意力机制】【主干篇】【neck优化】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】
2024-10-12 13:19:28
4340
32

原创 《RT-DETR魔术师》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、neck、loss等)进行魔改,实现创新!!!
2023-11-14 20:54:20
5155
24

原创 《YOLOv8-Pose关键点检测》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
YOLOv8-Pose关键点检测:1)手把手从数据集标注、训练到模型的教程;2)模型轻量化创新;3)loss优化教程
2023-11-02 09:19:27
5382
18

原创 《YOLOv7高阶自研》专栏介绍 & CSDN独家改进创新实战& 专栏目录
YOLOv7高阶自研专栏介绍:1)前沿最新计算机顶会复现;2)YOLOv7自研创新结合,轻松搞定科研;3)持续更新中,定期更新不同数据集涨点情况
2023-10-12 20:32:20
1968
30

原创 《深度学习工业缺陷检测》专栏介绍 & CSDN独家改进实战
深度学习工业缺陷检测:1)提供工业小缺陷检测性能提升方案,满足部署条件;2)针对缺陷样品少等难点,引入无监督检测;3)深度学习 C++、C#部署方案;4)实战工业缺陷检测项目,学习如何选择合适的框架和模型;
2023-09-22 21:05:56
4748
25

原创 《YOLOv5/YOLOv7魔术师》专栏介绍 & CSDN独家改进创新实战&专栏目录
YOLOv5/YOLOv7魔术师,独家首发创新(原创),持续更新,适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络
2023-07-04 21:56:18
2474
3

原创 《YOLOv8魔术师》专栏介绍 & CSDN独家改进创新实战&专栏目录
Yolov8魔术师,独家首发创新(原创),持续更新,适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络
2023-07-03 20:19:51
10665
7
原创 YOLOv5涨点优化:轻量化注意力 | 单头注意力模块,并行结合全局和局部信息提高准确度| SHViT CVPR2024
如何使用:1)SHSABlock加入backbone使用;2)和C3结合二次创新;
2025-02-07 17:04:31
6
原创 YOLOv10优化:大型条带卷积技术,更有效地提取空间信息 | Strip R-CNN,遥感目标检测 新SOTA,25年最新发表
大型条带卷积是遥感目标检测中极为有效的特征学习工具,能够精准捕捉并检测出不同长宽比的目标
2025-02-06 16:30:10
123
原创 YOLOv9优化:大型条带卷积技术,更有效地提取空间信息 | Strip R-CNN,遥感目标检测 新SOTA,25年最新发表
大型条带卷积是遥感目标检测中极为有效的特征学习工具,能够精准捕捉并检测出不同长宽比的目标。
2025-02-06 16:29:49
15
原创 YOLOv10涨点优化:自研检测头 | 原创自研 | 独家创新(一种新颖的风车形卷积PConv)检测头结构创新,实现涨点 | AAAI 2025
对现有v10Detect进行二次创新,引入一种新颖的风车形卷积(PConv)
2025-02-06 16:29:16
22
原创 YOLO11优化:大型条带卷积技术,更有效地提取空间信息 | Strip R-CNN,遥感目标检测 新SOTA,25年最新发表
大型条带卷积是遥感目标检测中极为有效的特征学习工具,能够精准捕捉并检测出不同长宽比的目标。
2025-02-06 14:58:38
409
原创 YOLOv8优化:大型条带卷积技术,更有效地提取空间信息 | Strip R-CNN,遥感目标检测 新SOTA,25年最新发表
StripBlock采用了序列正交的大型条带卷积技术,以更有效地提取空间信息
2025-02-06 14:58:14
25
原创 YOLOv8优化:原创自研 | 独家创新(一种新颖的风车形卷积PConv)检测头结构创新,实现涨点 | AAAI 2025
对现有v8Detect进行二次创新,提升检测精度,独家创新(PConv_v8Detect)检测头结构创新,适合科研创新度十足,强烈推荐
2025-02-05 13:33:12
29
原创 YOLO11涨点优化:自研检测头 | 原创自研 | 独家创新(一种新颖的风车形卷积PConv)检测头结构创新,实现涨点 | AAAI 2025
对现有11Detect进行二次创新,提升检测精度,独家创新(PConv_11Detect)检测头结构创新,适合科研创新度十足,强烈推荐
2025-02-05 13:28:00
325
原创 RT-DETR改进:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力
提出了一种基于尺度的动态(SD)损失,它根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力。
2025-01-24 10:31:54
49
原创 RT-DETR算法优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野
提出了一种新颖的风车形卷积(PConv)作为骨干网络下层标准卷积的替代品。PConv能更好地符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野,且只引入最小的参数增加。
2025-01-24 10:17:27
152
原创 RT-DETR算法优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力
提出了一种基于Transformer的盲点网络(TBSN)架构,通过分析和重新设计Transformer运算符以满足盲点要求
2025-01-24 10:17:01
30
原创 基于YOLO11的包裹分割检测(5):新颖的多尺度卷积注意力(MSCA),即插即用,助力分割
多尺度卷积注意力 | 亲测在包裹分割检测数据集上涨点,原始Mask mAP50 0.926提升至0.936
2025-01-23 09:14:20
41
原创 基于YOLO11的包裹分割检测(4):具有切片操作的SimAM注意力,魔改SimAM助力分割
魔改SimAM注意力 | 亲测在包裹分割检测数据集上涨点,原始Mask mAP50 0.926提升至0.932
2025-01-23 09:06:12
22
原创 基于YOLO11的包裹分割检测(3): 全局到局部可控感受野模块GL-CRM ,量身为为多尺度变化而设计
全局到局部可控感受野模块GL-CRM | 亲测在包裹分割检测数据集上涨点,原始Mask mAP50 0.926提升至0.934
2025-01-22 12:56:48
24
原创 基于YOLO11的包裹分割检测(2):空间频率注意力和通道转置注意力 ,恢复分割边缘细节| IJCAI-24
通道转置注意力(CTA) | 亲测在包裹分割检测数据集上涨点,原始Mask mAP50 0.926提升至0.94
2025-01-22 12:56:31
27
原创 基于YOLO11的包裹分割检测(1):单头注意力模块,并行结合全局和局部信息提升分割能力
单头注意力模块 | 亲测在包裹分割检测数据集上涨点,原始Mask mAP50 0.926提升至0.929
2025-01-22 12:56:09
22
原创 基于YOLO11的农业玉米雄蕊精准定位系统(Python源码+数据集+Pyside6界面)
基于YOLO11的农业玉米雄蕊精准定位系统,阐述了整个数据制作和训练可视化过程
2025-01-21 08:44:27
835
原创 YOLOv10全网首发优化:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力
较小的目标在BBox标签的Sloss中获得较低的关注权重。掩码标签可以提高检测精度,特别是对于较小或形状不规则的目标
2025-01-20 13:28:53
48
原创 YOLOv9全网首发优化:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力
根据目标尺度动态调整Sloss和Lloss的影响系数,以减少标签不准确对损失函数稳定性的影响。较小的目标在BBox标签的Sloss中获得较低的关注权重。掩码标签可以提高检测精度,特别是对于较小或形状不规则的目标
2025-01-20 13:28:26
22
原创 YOLOv8全网首发优化:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力
提出了一种基于尺度的动态(SD)损失,它根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力。
2025-01-20 13:06:54
58
原创 YOLO11全网首发优化:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力
根据目标尺度动态调整Sloss和Lloss的影响系数,以减少标签不准确对损失函数稳定性的影响。较小的目标在BBox标签的Sloss中获得较低的关注权重。掩码标签可以提高检测精度,特别是对于较小或形状不规则的目标
2025-01-20 13:06:17
201
原创 YOLOv10全网首发优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野
一种新颖的风车形卷积(PConv)在IRSTD-1K和sist - uavb数据集上实现了显着的性能改进,验证了我们方法的有效性和可泛化性
2025-01-17 16:59:38
404
3
原创 YOLO11全网首发优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野
我们提出了一种新颖的风车形卷积(PConv)作为骨干网络下层标准卷积的替代品。PConv能更好地符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野,且只引入最小的参数增加。
2025-01-17 16:49:19
398
原创 YOLOv8全网首发优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野
我们提出了一种新颖的风车形卷积(PConv)作为骨干网络下层标准卷积的替代品。PConv能更好地符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野,且只引入最小的参数增加。
2025-01-17 16:49:06
236
原创 YOLOv10优化:图像去噪 | Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力 | AAAI2025
如何使用:1)结合C2f二次创新使用;
2025-01-14 09:28:59
146
windows下成功编译dcnv4环境
2024-06-18
基于YOLOv8的足球赛环境下足球目标检测系统
2024-06-18
基于YOLOV8的注意力机制源代码获取,开箱即用
2023-08-19
铝片缺陷数据集,数据集大小1400张,缺陷类型一共四种:zhen-kong、ca-shang、 zang-wu、 zhe-zho
2023-06-09
红外小目标飞机检测数据集
2023-05-07
基于yolov5的二维码识别
2023-04-30
基于分割的工业划痕质检数据集
2023-04-30
yolov1、yolov2、yolov3、yolov4、yolov5、yolov6、yolov7等论文
2023-04-28
二维码数据集,数据集大小1085张
2023-04-28
玻璃瓶缺陷检测,缺陷类型:cap,数据集数量:125张
2023-04-28
三星油污缺陷类别:头发丝和小黑点, 数据集大小:660张
2023-04-28
pyqt+yolov5+pcb缺陷检测
2023-04-01
yolov5 tensorrt c++部署
2023-03-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人