YOLO11魔术师
该专栏为热销专栏榜 第28名
文章平均质量分 95
1)自研原创独家创新,适合paper,全网首发;
2)2024年计算机视觉顶会创新点引入11二次创新;
3)多个数据集亲测验证可行性;
优惠券已抵扣
余额抵扣
还需支付
¥199.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
AI小怪兽
YOLO骨灰级玩家,1)YOLOv5、v7、v8、v9、v10优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;订阅者私信添加本人微信!!!
展开
-
YOLO11涨点优化:原创自研 | 自研独家创新DSAM注意力 ,基于BiLevelRoutingAttention注意力升级
提出新颖的注意力DSAM(Deformable Bi-level SpatialAttention Module),创新度极佳,适合科研创新,效果秒杀CBAM,Channel Attention+Spartial Attention升级为新颖的Deformable Bi-level Attention+Spartial Attention原创 2024-10-18 08:42:04 · 256 阅读 · 0 评论 -
YOLO11涨点优化:SPPF原创自研创新 | SPPF创新结构,重新设计全局平均池化层和全局最大池化层,增强全局视角信息和不同尺度大小的特征
SPPF_improve利用全局平均池化层和全局最大池化层,加入一些全局背景信息和边缘信息,从而获取全局视角信息并减轻不同尺度大小所带来的影响原创 2024-10-15 09:41:44 · 341 阅读 · 0 评论 -
YOLO11涨点优化:原创自研 | 一种新颖的跨通道交互的高效率通道注意力EMCA,ECA改进版
基于ECA注意力,提出了一种新颖的EMCA注意力(跨通道交互的高效率通道注意力),保持高效轻量级的同时,提升多尺度提取能力原创 2024-10-14 10:46:08 · 765 阅读 · 0 评论 -
YOLO11涨点优化:自研检测头 | 独家创新(SC_C_11Detect)检测头结构创新,实现涨点
对现有11Detect进行二次创新,提升检测精度,独家创新(SC_C_11Detect)检测头结构创新,适合科研创新度十足,强烈推荐原创 2024-10-14 10:28:56 · 192 阅读 · 0 评论 -
《YOLO11魔术师专栏》专栏介绍 & 专栏目录
【原创自研模块】【多组合点优化】【注意力机制】【主干篇】【neck优化】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】原创 2024-10-12 13:19:28 · 1814 阅读 · 30 评论 -
YOLO11涨点优化:注意力魔改 | 新颖的多尺度卷积注意力(MSCA),即插即用,助力小目标检测
多尺度卷积注意力(MSCA),有效地提取上下文信息,新颖度高,创新十足。原创 2024-10-09 10:43:01 · 334 阅读 · 0 评论 -
YOLO11涨点优化:SPPF原创自研 | SPPF_attention,重新设计加入注意力机制,能够在不同尺度上更好的、更多的关注注意力特征信息
在此基础上加入注意力机制,能够在不同尺度上更好的、更多的获取特征信息,从而获取全局视角信息并减轻不同尺度大小所带来的影响原创 2024-10-16 08:44:34 · 221 阅读 · 0 评论 -
YOLO11涨点优化:自研检测头 | 独家创新(Partial_C_v10Detect)检测头结构创新,实现涨点
对现有11Detect进行二次创新,提升检测精度,独家创新(Partial_C_11Detect)检测头结构创新,适合科研创新度十足,强烈推荐原创 2024-10-23 10:27:25 · 234 阅读 · 0 评论 -
YOLO11涨点优化:原创自研 | 自研独家创新BSAM注意力 ,基于CBAM升级
本文改进:1)作为注意力机制分别加入到YOLO11的backbone、neck、detect,助力涨点;2)结合C2PSA进行二次创新;原创 2024-10-17 09:24:57 · 306 阅读 · 0 评论 -
YOLO11涨点优化:原创自研 | 自研独家创新MSAM注意力,通道注意力升级,魔改CBAM
1)作为注意力机制分别加入到YOLO11的backbone、neck、detect,助力涨点;2)结合C2PSA进行二次创新;原创 2024-10-16 08:43:47 · 161 阅读 · 0 评论 -
YOLO11涨点优化:SPPF优化 | 新一代高效可形变卷积DCNv4如何做二次创新?高效结合SPPF
如何跟YOLO11结合:1) SPPF高效结合原创 2024-10-12 10:27:18 · 192 阅读 · 0 评论 -
YOLO11涨点优化:多尺度 | 大内核和倒瓶颈设计CMUNeXt,高效提取全局上下文信息助力医学图像检测
CMUNeXt利用大内核和倒瓶颈设计,将远距离空间和位置信息彻底混合,高效提取全局上下文信息原创 2024-11-08 08:38:55 · 258 阅读 · 0 评论 -
YOLO11涨点优化:注意力魔改 | 多尺度空洞注意力(MSDA),有效捕捉多尺度信息 | 中科院一区顶刊
多尺度空洞注意力(MSDA)采用多头的设计,在不同的头部使用不同的空洞率执行滑动窗口膨胀注意力(SWDA),创新力度十足原创 2024-11-07 09:48:47 · 125 阅读 · 0 评论 -
YOLO11改进:backbone改进 | 最新大卷积核CNN架构UniRepLKNet,ImageNet 88% | CVPR2024
大核卷积一统多种模态!RepLK正统续作UniRepLKNet,代替YOLO11 Backbone原创 2024-11-08 13:42:13 · 24 阅读 · 0 评论 -
YOLO11优化:block优化 | 简单高效的模块-现代反向残差移动模块 (iRMB) | ICCV2023 EMO
提出了一种简单高效的模块——反向残差移动块(iRMB),通过堆叠不同层级的 iRMB原创 2024-11-08 13:15:48 · 12 阅读 · 0 评论 -
YOLO11旋转目标识别(OBB)手把手教程: 数据集标注 | 数据格式转换 | 如何训练、测试
YOLO11 OBB实现自有数据集缺陷旋转目标检测,从1)数据标记;2)数据json格式转换成适合yolo的txt格式;3)如何训练模型;原创 2024-11-06 08:56:01 · 90 阅读 · 0 评论 -
YOLO11热力图可视化:引入多种可视化CAM方法,为科研保驾护航
调用pytorch下的CAM可视化库,支持十多种可视化方法,打开“黑盒”,让YOLO11变得相对可解释性原创 2024-10-31 08:33:36 · 86 阅读 · 0 评论 -
YOLO11数据增强 :自动生成图片以及xml文件,开箱即用
针对小样本数据集如何有效的数据增强,以及如何自动生成对应的xml文件,本文提供了多种数据增强方式,如1)Gamma变化;2)滤波类数据增强: GaussianBlur、medianBlur、blur;3)缩放类数据增强;4)翻转类数据增强;原创 2024-10-31 08:33:19 · 183 阅读 · 0 评论 -
YOLO11涨点优化:多尺度 | 全局到局部可控感受野模块GL-CRM ,量身为为多尺度变化而设计| 2024年10月最新成果
替换YOLO11 C3k2,实现二次创新,具备多尺度能力原创 2024-10-28 08:51:24 · 212 阅读 · 0 评论 -
YOLOv11全网首发:注意力独家魔改 | 具有切片操作的SimAM注意力,魔改SimAM助力小目标检测
1)直接作为注意力使用,效果秒杀SimAM;2)高效和卷积结合,代替原始网络的卷积操作;原创 2024-10-15 08:38:42 · 176 阅读 · 0 评论 -
YOLO11全网独家改进:注意力独家魔改 | 可变形双级路由注意力(DBRA),魔改动态稀疏注意力的双层路由方法BiLevelRoutingAttention | 2024年10月最新
1)作为注意力可变形双级路由注意力(DBRA)模块使用;2)结合C2PSA二次创新原创 2024-10-15 08:37:55 · 95 阅读 · 0 评论 -
YOLO11-pose关键点检测:训练实战篇 | 自己数据集从labelme标注到生成yolo格式的关键点数据以及训练教程
教会你如何用自己的数据集转换成对应格式的数据集以及如何训练YOLO11-pose关键点检测原创 2024-10-16 15:07:15 · 346 阅读 · 0 评论 -
YOLO11涨点优化:IoU优化 | Unified-loU,用于高品质目标检测的统一loU ,2024年8月最新IoU
提出了一种新的IoU损失函数,称为统一IoU(Unified-IoU, UIoU),它更关注不同质量预测框之间的权重分配,该损失函数既考虑了预测盒与GT盒之间的几何关系,又考虑了IoU权值和置信度信息,充分利用了已知信息原创 2024-10-15 08:31:32 · 94 阅读 · 0 评论 -
YOLO11涨点优化:注意力独家魔改 | 一种新颖的高效融合注意力机制,结合C3k2二次创新,2024年最新注意力成果
提出了一种新颖的高效融合注意力机制,2024年最新注意力成果,增强了模型的特征提取能力,同时减少通道和空间位置的冗余。原创 2024-10-14 10:41:05 · 130 阅读 · 0 评论 -
YOLO11涨点优化:注意力独家魔改 | 一种新的空间和通道协同注意模块,充分挖掘通道和空间注意之间的协同作用 | 2024年7月最新成果
提出了一种新的空间和通道协同注意模块(SSCSA),由两部分组成:可共享的多语义空间注意(SMSA)和渐进式信道自注意(PCSA)原创 2024-10-14 10:20:22 · 58 阅读 · 0 评论 -
YOLO11涨点优化:注意力魔改 | 注意力独家魔改 | 蒙特卡罗注意力(MCAttn)模块,基于尺度变化的注意力网络 | 2024年7月最新成果
提出了一种新的基于尺度变化的注意力网络,用于小尺度目标检测分割。原创 2024-10-14 10:19:53 · 77 阅读 · 0 评论 -
YOLO11涨点优化:轻量化网络 | 基于特征重用和特征CSO的CAM,创新十足
通过增加基于特征重用和特征CSO的CAM,该模型在检测准确性和轻量化方面都取得了良好的效果。原创 2024-10-14 10:19:04 · 58 阅读 · 0 评论 -
YOLO11涨点优化:卷积魔改 | 轻量化双卷积DualConv,完成涨点且计算量和参数量显著下降
双卷积由组卷积和异构卷积组成,执行 3×3 和 1×1 卷积运算代替其他卷积核仅执行 1×1 卷积。原创 2024-10-14 10:17:15 · 108 阅读 · 0 评论 -
YOLO11涨点优化:特征融合 | 一种新颖的多尺度特征融合iAFF,适配小目标检测
在YOLO11中如何使用:iAFF加入Neck替代Concat;原创 2024-10-13 14:33:30 · 134 阅读 · 0 评论 -
YOLO11涨点优化:KAN系列 | 「一夜干掉MLP」的KAN ,全新神经网络架构一夜爆火
如何跟YOLO11结合:KANConv结合C3k2从而替代YOLO11的C3k2原创 2024-10-13 14:31:38 · 119 阅读 · 0 评论 -
YOLO11涨点优化:backbone改进 | 微软新作StarNet:超强轻量级Backbone | CVPR 2024
StarNet,一个简单而强大的原型,在紧凑的网络结构和高效的预算下展示了令人印象深刻的性能和低延迟。原创 2024-10-12 10:34:08 · 125 阅读 · 0 评论 -
YOLO11涨点优化:backbone改进 | 轻量化之王MobileNetV4 开源 | Top-1 精度 87%,手机推理速度 3.8ms,原地起飞!
轻量化之王MobileNetV4 开源 | Top-1 精度 87%,手机推理速度 3.8ms,原地起飞!原创 2024-10-12 10:31:00 · 122 阅读 · 0 评论 -
YOLO11涨点优化:卷积魔改 | DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 ,助力检测
DCNv4更快收敛、更高速度、更高性能,完美和YOLO11结合,助力涨点原创 2024-10-12 10:09:15 · 167 阅读 · 0 评论 -
YOLO11涨点优化:backbone改进 | EMO,结合 CNN 和 Transformer 的现代倒残差移动模块设计 |ICCV2023
如何跟YOLO11结合:替代YOLOv10的backbone原创 2024-10-12 09:58:05 · 127 阅读 · 0 评论 -
YOLO11涨点优化:注意力魔改 | 通道优先卷积注意力(Channel Prior Convolutional Attention,CPCA)| 中科院 发布
新的通道优先卷积注意力(Channel Prior Convolutional Attention,CPCA)方法,采用多尺度的深度可分离卷积模块构成空间注意力,可以在通道和空间维度上动态分配注意权重。原创 2024-10-12 09:53:29 · 77 阅读 · 0 评论 -
YOLO11涨点优化:卷积魔改 | 可变形条带卷积(DSCN),魔改轻量DCNv3二次创新
如何跟YOLO11结合:1)和C3k2创新性结合原创 2024-10-12 09:47:48 · 90 阅读 · 0 评论 -
YOLO11涨点优化:neck魔改 | Gold-YOLO,遥遥领先,超越所有YOLO | 华为诺亚NeurIPS23
提出了全新的信息聚集-分发(Gather-and-Distribute Mechanism)GD机制,Gold-YOLO,替换yolo11 neck部分 实现暴力涨点原创 2024-10-12 09:37:56 · 140 阅读 · 0 评论 -
YOLO11涨点优化:loss优化 | SlideLoss,解决简单样本和困难样本之间的不平衡问题
SlideLoss,解决简单样本和困难样本之间的不平衡问题,并使用有效感受野的信息来设计Anchor。原创 2024-10-12 09:21:52 · 97 阅读 · 0 评论 -
YOLO11涨点优化:轻量化卷积魔改 | 新的partial convolution(PConv)结合C3k2 | CVPR2023
新的partial convolution(PConv),通过同时减少冗余计算和内存访问可以更有效地提取空间特征。原创 2024-10-12 09:20:15 · 154 阅读 · 0 评论 -
YOLO11涨点优化:小目标检测 | 多头检测器提升小目标检测精度
引入多头检测器助力YOLO11,添加一个微小物体的检测头暴力提升小目标检测性能原创 2024-10-12 09:09:50 · 281 阅读 · 0 评论