涨点神器:Yolov5 加入ODConv+ConvNeXt提升小目标检测能力,适用yolo各个系列

本文介绍了如何结合ICLR 2022的ODConv和ConvNeXt技术增强YOLO的目标检测性能,特别是在小目标检测方面的提升。通过在YOLOv5中加入ODConv和ConvNeXt,实现网络结构的优化,并通过修改配置文件进行实验,验证了这种结合在多个数据集上的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.涨点神器结合,助力YOLO

1.1  ICLR 2022涨点神器——即插即用的动态卷积ODConv

论文:Omni-Dimensional Dynamic Convolution

论文地址:Omni-Dimensional Dynamic Convolution | OpenReview

ODConv通过并行策略引入一种多维注意力机制以对卷积核空间的四个维度学习更灵活的注意力。上图给出CondConv、DyConv以及ODConv的差异图。延续动态卷积的定义,ODConv可以描述成如下形式:其中,表示卷积核的注意力标量

表示新引入的三个注意力,分别沿空域维度、输入通道维度以及输出通道维度。这四个注意力采用多头注意力模块 计算得到

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值