YOLOv5独家原创改进:原创自研 | 自研独家创新MSAM注意力,通道注意力升级,魔改CBAM

本文介绍了对YOLOv5的自研改进MSAM,这是一种基于CBAM的多尺度通道注意力模块,提升了目标检测性能。在道路缺陷检测任务中,MSAM相比于CBAM和原始模型有显著提升。详细步骤和源码提供,帮助读者理解并实践网络魔改。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  💡💡💡本文自研创新改进MSAM(CBAM升级版):通道注意力具备多尺度性能,多分支深度卷积更好的提取多尺度特征,最后高效结合空间注意力

 1)作为注意力MSAM使用;

推荐指数:五星

MSCA  |   亲测在多个数据集能够实现涨点,对标CBAM。

在道路缺陷检测任务中,原始map为0.8,cbam为0.822  ,MSCA  为  0.855

 

 

收录

YOLOv5原创自研

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值