一种基于YOLOv8的高精度PCB缺陷检测算法(原创自研)

  💡💡💡本文内容:提出了一种基于YOLOv8的高精度PCB缺陷检测算法,包括1)一种基于内容引导注意力(CGA)的混合融合方案;2)广义高效层聚合网络(GELAN) | YOLOv9

mAP@0.5由原始的0.966提升至0.980

  💡💡💡消融实验如下:

1)提出了一种基于内容引导注意力(CGA)的混合融合方案,mAP@0.5由原始的0.966提升至0.975

2)广义高效层聚合网络(GELAN) | YOLOv9,mAP@0.5由原始的0.966提升至0.978

1.PCB缺陷检测数据集介绍    

印刷电路板(PCB)瑕疵数据集是一个公共的合成PCB数据集,6种缺陷(缺失孔,鼠咬伤,开路,短路,杂散,伪铜),用于检测、分类和配准任务。我们选取了其中适用于检测任务的693张图像,然后进行一倍数据扩充得到1386张

细节图:

 类别分布情况:

2.基于YOLOv8的PCB缺陷检测

2.1 原始结果

原始mAP为0.966

推理结果 

2.2 一种基于内容引导注意力(CGA)的混合融合方案

特征融合创新 | 一种基于内容引导注意力(CGA)的混合融合,实现暴力涨点 | IEEE TIP 2024 浙大

 💡💡💡创新点:提出了一种基于内容引导注意力(CGA)的混合融合方案,将编码器部分的低级特征与相应的高级特征有效融合。

 💡💡💡如何跟YOLOv8结合:将backbone和neck的特征融合,改进结构图如下

mAP@0.5由原始的0.966提升至0.975

 2.3 广义高效层聚合网络(GELAN) | YOLOv9

原文链接:

YOLOv8独家原创改进:特征融合涨点篇 | 广义高效层聚合网络(GELAN) | YOLOv9_高 效 层 聚 合 网 络-CSDN博客

💡💡💡本文独家改进:即结合用梯度路径规划(CSPNet)和(ELAN)设计了一种广义的高效层聚合网络(GELAN,高效结合YOLOv8,实现涨点。

广义高效层聚合网络(GELAN):使用GELAN改进架构 

GELAN通过结合两种神经网络架构,即结合用梯度路径规划(CSPNet)和(ELAN)设计了一种广义的高效层聚合网络(GELAN);GELAN综合考虑了轻量级、推理速度和准确度。

特征1:综合设计 - GELAN融合了CSPNet和ELAN的设计理念,创建了一个灵活的网络架构,能够根据不同的应用需求和计算资源进行调整。

CSPNet通过分割和合并特征图来减少冗余计算,而ELAN则使用层聚合来增强特征的表示能力。

特征2:计算块的自由选择 - 与传统的深度网络架构依赖特定类型的计算单元不同,GELAN允许在其框架内使用各种类型的计算块,比如传统的卷积层、深度可分卷积或者其他类型的新颖计算单元。

mAP@0.5由原始的0.966提升至0.978

 3.一种基于YOLOv8的高精度PCB缺陷检测算法(原创自研)

   💡💡💡本文内容:提出了一种基于YOLOv8的高精度PCB缺陷检测算法,包括1)一种基于内容引导注意力(CGA)的混合融合方案;2)广义高效层聚合网络(GELAN) | YOLOv9

mAP@0.5由原始的0.966提升至0.980

 4.系列篇

 1)加入一种基于内容引导注意力(CGA)的混合融合方案

2) 广义高效层聚合网络(GELAN) 来自YOLOv9 

3)一种基于YOLOv8的高精度PCB缺陷检测算法(原创自研)

关注下方名片点击关注,源码获取途径。  

关注下方名片点击关注,源码获取途径。   

关注下方名片点击关注,源码获取途径。   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值