💡💡💡本文内容:提出了一种基于YOLOv8的高精度PCB缺陷检测算法,包括1)一种基于内容引导注意力(CGA)的混合融合方案;2)广义高效层聚合网络(GELAN) | YOLOv9
mAP@0.5由原始的0.966提升至0.980
💡💡💡消融实验如下:
1)提出了一种基于内容引导注意力(CGA)的混合融合方案,mAP@0.5由原始的0.966提升至0.975
2)广义高效层聚合网络(GELAN) | YOLOv9,mAP@0.5由原始的0.966提升至0.978
1.PCB缺陷检测数据集介绍
印刷电路板(PCB)瑕疵数据集是一个公共的合成PCB数据集,6种缺陷(缺失孔,鼠咬伤,开路,短路,杂散,伪铜),用于检测、分类和配准任务。我们选取了其中适用于检测任务的693张图像,然后进行一倍数据扩充得到1386张
细节图:
类别分布情况:
2.基于YOLOv8的PCB缺陷检测
2.1 原始结果
原始mAP为0.966
推理结果
2.2 一种基于内容引导注意力(CGA)的混合融合方案
特征融合创新 | 一种基于内容引导注意力(CGA)的混合融合,实现暴力涨点 | IEEE TIP 2024 浙大
💡💡💡创新点:提出了一种基于内容引导注意力(CGA)的混合融合方案,将编码器部分的低级特征与相应的高级特征有效融合。
💡💡💡如何跟YOLOv8结合:将backbone和neck的特征融合,改进结构图如下
mAP@0.5由原始的0.966提升至0.975
2.3 广义高效层聚合网络(GELAN) | YOLOv9
原文链接:
YOLOv8独家原创改进:特征融合涨点篇 | 广义高效层聚合网络(GELAN) | YOLOv9_高 效 层 聚 合 网 络-CSDN博客
💡💡💡本文独家改进:即结合用梯度路径规划(CSPNet)和(ELAN)设计了一种广义的高效层聚合网络(GELAN),高效结合YOLOv8,实现涨点。
广义高效层聚合网络(GELAN):使用GELAN改进架构
GELAN通过结合两种神经网络架构,即结合用梯度路径规划(CSPNet)和(ELAN)设计了一种广义的高效层聚合网络(GELAN);GELAN综合考虑了轻量级、推理速度和准确度。
特征1:综合设计 - GELAN融合了CSPNet和ELAN的设计理念,创建了一个灵活的网络架构,能够根据不同的应用需求和计算资源进行调整。
CSPNet通过分割和合并特征图来减少冗余计算,而ELAN则使用层聚合来增强特征的表示能力。
特征2:计算块的自由选择 - 与传统的深度网络架构依赖特定类型的计算单元不同,GELAN允许在其框架内使用各种类型的计算块,比如传统的卷积层、深度可分卷积或者其他类型的新颖计算单元。
mAP@0.5由原始的0.966提升至0.978
3.一种基于YOLOv8的高精度PCB缺陷检测算法(原创自研)
💡💡💡本文内容:提出了一种基于YOLOv8的高精度PCB缺陷检测算法,包括1)一种基于内容引导注意力(CGA)的混合融合方案;2)广义高效层聚合网络(GELAN) | YOLOv9
mAP@0.5由原始的0.966提升至0.980
4.系列篇
3)一种基于YOLOv8的高精度PCB缺陷检测算法(原创自研)
关注下方名片点击关注,源码获取途径。
关注下方名片点击关注,源码获取途径。
关注下方名片点击关注,源码获取途径。