
YOLOv8魔术师
文章平均质量分 90
YOLOv8魔术师
1)内涵2023最难计算机视觉三大顶会创新点;
2)在多个数据集亲测验证mAP涨点,尤其是小目标、遮挡物精度提升明显;
3)多个创新点全网独家首发,持续更新中;
优惠券已抵扣
余额抵扣
还需支付
¥129.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
AI小怪兽
YOLO骨灰级玩家,1)YOLOv5、v7、v8、v9、v10、11优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;订阅者私信添加本人微信!!!
展开
-
YOLOv8独家原创改进:原创自研 | 自研独家创新BSAM注意力 ,基于CBAM升级
提出新颖的注意力BSAM(BiLevel SpatialAttention Module),创新度极佳,适合科研创新,效果秒杀CBAM,Channel Attention+Spartial Attention升级为新颖的BiLevel Attention+Spartial Attention原创 2023-11-04 13:53:50 · 5799 阅读 · 16 评论 -
YOLOv8优化:独家创新(SC_C_Detect)检测头结构创新,实现涨点 | 检测头新颖创新系列
独家创新(SC_C_Detect)检测头结构创新,适合科研创新度十足,强烈推荐原创 2023-10-24 21:10:37 · 4317 阅读 · 34 评论 -
全网首发YOLOv8暴力涨点:Gold-YOLO,遥遥领先,超越所有YOLO | 华为诺亚NeurIPS23
Gold-YOLO,遥遥领先,超越所有YOLO,替换yolov8 head部分实现暴力涨点原创 2023-09-25 13:58:07 · 7276 阅读 · 126 评论 -
首发Yolov8涨点神器:动态蛇形卷积(Dynamic Snake Convolution),实现暴力涨点 | ICCV2023
动态蛇形卷积(Dynamic Snake Convolution),增强细长微弱的局部结构特征与复杂多变的全局形态特征原创 2023-09-05 21:09:54 · 5968 阅读 · 45 评论 -
《YOLOv8魔术师》专栏介绍 & CSDN独家改进创新实战&专栏目录
Yolov8魔术师,独家首发创新(原创),持续更新,适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络原创 2023-07-03 20:19:51 · 11004 阅读 · 7 评论 -
YOLOv8独家原创改进:一种新颖的YOLO-JD网络,助力农业病害检测
提出了一种新颖的,基于YOLOv8改进的农业病害检测网络YOLO-JD原创 2024-08-05 08:37:10 · 732 阅读 · 0 评论 -
YOLOv8独家改进:注意力独家魔改 | 一种新颖的高效融合注意力机制,2024年最新注意力成果
提出了一种新颖的高效融合注意力机制,2024年最新注意力成果,增强了模型的特征提取能力,同时减少通道和空间位置的冗余。原创 2024-08-01 08:40:13 · 1138 阅读 · 0 评论 -
YOLOv8独家改进:注意力独家魔改 | 一种新的空间和通道协同注意模块(SCSA),充分挖掘通道和空间注意之间的协同作用 | 2024年7月最新成果
提出了一种新的空间和通道协同注意模块(SCSA),由两部分组成:可共享的多语义空间注意(SMSA)和渐进式信道自注意(PCSA)原创 2024-07-12 08:58:32 · 2462 阅读 · 1 评论 -
YOLOv8首发改进: 注意力魔改 | 高效的部分自注意力(PSA)模块,来自YOLOv10
高效的部分自注意力(PSA)模块,来自YOLOv10原创 2024-05-30 10:48:54 · 1064 阅读 · 1 评论 -
YOLOv8首发改进: 轻量级改进 | C2fUIB:紧凑反转块(CIB)结构结合C2f,来自YOLOv10
参数量比较,YOLOv8n GFLOPs从原始的8.2显著降低至6.6 GFLOPs原创 2024-05-27 13:33:49 · 1448 阅读 · 3 评论 -
YOLOv8独家原创改进: 通用倒瓶颈(UIB)搜索块结合C2f二次创新 | 轻量化之王MobileNetV4
通用倒瓶颈(UIB)搜索块结合C2f二次创新原创 2024-05-09 10:42:49 · 1608 阅读 · 2 评论 -
YOLOv8全网独家改进: 小目标 | 注意力 |卷积和注意力融合模块(CAFMAttention) | 2024年4月最新成果
卷积和注意力融合模块(CAFMAttention),增强对全局和局部特征的提取能力,2024年最新的改进思路原创 2024-04-02 22:08:43 · 3830 阅读 · 2 评论 -
YOLOv8全网独家改进: 小目标 |新颖的多尺度前馈网络(MSFN) | 2024年4月最新成果
多尺度前馈网络(MSFN),通过提取不同尺度的特征来增强特征提取能力,2024年最新的改进思路原创 2024-04-02 22:07:59 · 2330 阅读 · 1 评论 -
YOLOv8改进:基础篇 | 手把手教程&初学者入门 | 如何训练、验证、预测模型以及如何修改超参数
本文内容:手把手教程,教会你如何训练、验证、预测模型以及如何修改超参数原创 2024-04-02 09:34:17 · 1115 阅读 · 0 评论 -
YOLOv8独家改进:backbone改进 | 视觉新主干!RMT:RetNet遇见视觉Transformer | CVPR2024
RMT:一种强大的视觉Backbone,灵活地将显式空间先验集成到具有线性复杂度的视觉主干中原创 2024-03-23 09:36:49 · 1323 阅读 · 0 评论 -
YOLOv8独家改进: 注意力机制改进 | 上下文锚点注意力(CAA) | CVPR2024 PKINet 遥感图像目标检测
引入了CAA模块来捕捉长距离的上下文信息,利用全局平均池化和1D条形卷积来增强中心区域的特征原创 2024-03-21 15:17:20 · 2686 阅读 · 0 评论 -
YOLOv8独家改进: block优化 | PKIBlock多尺度卷积核,优势无需膨胀,即插即用小目标涨点 | CVPR2024 PKINet 遥感图像目标检测
PKIBlock多尺度卷积核,优势无需膨胀,即插即用小目标涨点原创 2024-03-21 15:17:03 · 2778 阅读 · 6 评论 -
YOLOv8独家改进:block改进 | RepViTBlock和C2f进行结合实现二次创新 | CVPR2024清华RepViT
RepViTBlock和C2f进行结合实现二次创新原创 2024-03-18 16:35:24 · 2143 阅读 · 2 评论 -
YOLOv8独家改进:注意力机制改进 | 聚合注意力增强版AggregatedAttention,效果秒杀CBAM等经典注意力| CVPR2024 TransXNet
CVPR2024TransXNet 聚合注意力增强版AggregatedAttention加入到YOLOv8以及巧妙的和C2f结合。原创 2024-03-13 09:39:29 · 1979 阅读 · 30 评论 -
YOLOv8独家改进:backbone改进 | TransXNet:聚合全局和局部信息的全新CNN-Transformer视觉主干| CVPR2024
CVPR2024 TransXNet助力检测,代替YOLOv8 Backbone原创 2024-03-13 08:33:57 · 1372 阅读 · 4 评论 -
YOLOv8独家改进:C2f改进 | 最新大卷积核CNN架构UniRepLKNet,UniRepLKNetBlock结合C2f,显著提升识别精度 | CVPR2024
最新大卷积核CNN架构UniRepLKNet,UniRepLKNetBlock结合C2f,代替YOLOv8 c2f原创 2024-03-12 08:32:49 · 1255 阅读 · 2 评论 -
YOLOv8独家改进:backbone改进 | 最新大卷积核CNN架构UniRepLKNet,ImageNet 88% | CVPR2024
大核卷积一统多种模态!RepLK正统续作UniRepLKNet,代替YOLOv8 Backbone原创 2024-03-11 14:12:44 · 1113 阅读 · 1 评论 -
YOLOv8创新改进:小目标涨点篇 | 一种新颖的轻量化网络,用于提升遥感图像中的小物体检测 | 2024年二区YOLOv5改进最新成果
现将本文思想迁移到YOLOv8做二次创新,提出了三个创新的轻量级即插即用模块:特征增强模块(FEM)、特征融合模块(FFM)和空间上下文感知模块(SCAM原创 2024-03-06 10:11:38 · 3418 阅读 · 4 评论 -
YOLOv8创新改进:SPPF创新涨点篇 | SPPELAN:SPP创新结合ELAN ,效果优于SPP、SPPF| YOLOv9
新颖SPPF创新涨点改进,SPP创新结合ELAN,来自于YOLOv9,助力YOLOv8,将SPPELAN代替原始的SPPF原创 2024-03-05 09:14:43 · 2099 阅读 · 3 评论 -
YOLOv8独家原创改进:下采样创新篇 | 新颖的下采样ADown | YOLOv9
新颖的下采样ADown来自于YOLOv9,助力YOLOv8,将ADown添加在backbone和head处,提供多个yaml改进方法原创 2024-03-05 08:38:26 · 1411 阅读 · 0 评论 -
YOLOv8独家原创改进:特征融合涨点篇 | 广义高效层聚合网络(GELAN) | YOLOv9
将GELAN添加在backbone和head处,提供多个yaml改进方法原创 2024-03-04 15:41:58 · 1436 阅读 · 2 评论 -
YOLOv8改进:下采样系列 | 一种新颖的基于 Haar 小波的下采样HWD,有效涨点系列
HWD的核心思想是应用Haar小波变换来降低特征图的空间分辨率,同时保留尽可能多的信息,与传统的下采样方法相比,有效降低信息不确定性。原创 2024-02-02 08:48:55 · 2245 阅读 · 0 评论 -
YOLOV8原创改进:一种新型轻量级实时检测算法 | 适用场景:低照度场景,如雾天行人车辆等
YOLOv8s进行对比,GFLOPs从原始的28.6降低至17.3和21.4原创 2024-01-28 09:19:40 · 1516 阅读 · 12 评论 -
YOLOv8全网独家首发:Powerful-IoU更好、更快的收敛IoU | 2024年最新IoU
Powerful-IoU更好、更快的收敛IoU,是一种结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数的损失函数原创 2024-01-25 19:07:49 · 3006 阅读 · 2 评论 -
YOLOv8全网独家首发:更加聚焦的IoU损失Focaler-IoU,二次创新如何结合Shape IoU、MPDIoU、GIoU、DIoU、CIoU等 | 2024年最新IoU
更加聚焦的IoU损失Focaler-IoU,能够在不同的检测任务中聚焦不同的回归样本,使用线性区间映射的方法来重构IoU损失原创 2024-01-24 13:44:02 · 1912 阅读 · 0 评论 -
YOLOv8 OBB实现自有数据集缺陷旋转检测,从数据标记格式转换到训练的手把手教程
YOLOv8 OBB实现自有数据集缺陷旋转检测,从数据标记到训练的手把手教程原创 2024-01-15 17:43:02 · 2420 阅读 · 9 评论 -
YOLOv8涨点改进:多层次特征融合(SDI),小目标涨点明显,| UNet v2,比UNet显存占用更少、参数更少
多层次特征融合(SDI),能够显著提升不同尺度和小目标的识别率原创 2024-01-12 09:02:21 · 2710 阅读 · 3 评论 -
YOLOv8算法优化:解决YOLOv8无法打印计算量(GFLOPs)的问题点
本文内容:解决YOLOv8无法打印计算量的问题点;本文提供:1)训练阶段自动打印计算量;2)提供离线打印计算量的代码;原创 2023-12-28 12:41:22 · 5713 阅读 · 5 评论 -
YOLOv8可视化:多种绘制曲线对比图,为科研保驾护航
将不同改进的训练结果可视化到同个图表显示,便于对比。原创 2023-12-27 14:10:28 · 3775 阅读 · 10 评论 -
YOLOv8可视化:引入多种可视化CAM方法,为科研保驾护航
调用pytorch下的CAM可视化库,支持十多种可视化方法,打开“黑盒”,让YOLOv8变得相对可解释性原创 2023-12-27 14:09:47 · 2549 阅读 · 10 评论 -
YOLOv8涨点技巧:一种新颖的多尺度特征融合iAFF,适配小目标检测
1)iAFF加入Neck替代Concat;2)Conv替换为GhostConv;3)加入C3Ghost;原创 2023-12-22 12:43:58 · 4567 阅读 · 17 评论 -
YOLOv8涨点改进:轻量级的 Mixed Local Channel Attention (MLCA),加强通道信息和空间信息提取能力
一种轻量级的 Mixed Local Channel Attention (MLCA) 模块,该模块考虑通道信息和空间信息,并结合局部信息和全局信息以提高网络的表达效果原创 2023-12-20 13:56:15 · 3757 阅读 · 0 评论 -
YOLOv8独家原创改进:SENet v2,Squeeze-Excitation模块融合Dense Layer,效果秒杀SENet | 2023.11月最新成果
SENet v2,针对SENet主要优化点,提出新颖的多分支Dense Layer,并与Squeeze-Excitation网络模块高效融合,融合增强了网络捕获通道模式和全局知识的能力原创 2023-12-01 14:30:17 · 2642 阅读 · 20 评论 -
YOLOv8独家原创改进: AKConv(可改变核卷积),即插即用的卷积,效果秒杀DSConv | 2023年11月最新发表
可改变核卷积(AKConv),赋予卷积核任意数量的参数和任意采样形状,为网络开销和性能之间的权衡提供更丰富的选择,解决具有固定样本形状和正方形的卷积核不能很好地适应不断变化的目标的问题点,效果秒殺DSConv原创 2023-11-27 13:25:03 · 3313 阅读 · 25 评论 -
YOLOv8独家首发改进:聚合全局、局部信息模块D-Mixer和全新重叠空间降维注意力 | TransXNet ,CNN 与 ViT 的完美结合,2023.11
改进1)重叠空间降维注意(OSRA),2)混合网络模块(D-Mixer),聚合全局信息和局部细节,分别引入到YOLOv8,做到二次创新;原创 2023-11-27 10:16:01 · 1543 阅读 · 1 评论