算法设计与分析
深圳大学算法课报告以及作业分享
辛之助
这个作者很懒,什么都没留下…
展开
-
排序算法以及TOP 10(算法实验一)
通过对大量样本的测试结果,统计不同排序算法的时间效率与输入规模的关系,通过经验分析方法,展示不同排序算法的时间复杂度,并与理论分析的基本运算次数做比较,验证理论分析结论的正确性。在原有基础代码中其实有很多冗余的操作,比如排好序的任要继续遍历等,所以要多敲多实践,当然也不能只是想当然,比如选择排序空以为一趟下来排好两个位置会使运行时间减半,但其实也增加了一趟下来的操作,虽有优化,但也不至于是减半。分析:对于快排来说,此数据规模偏小,所以造成了实际和理论的运行时间有着较大的偏差,但总体来说实际与理论大致吻合。原创 2024-03-15 20:57:47 · 1313 阅读 · 0 评论 -
算法作业四
原创 2024-02-28 23:56:25 · 476 阅读 · 0 评论 -
算法作业3
原创 2024-02-19 23:55:38 · 364 阅读 · 0 评论 -
算法作业2
这次这个作业有人可以解答一下算法正确性该怎么证吗还是不是很会时隔快一年。原创 2024-02-19 23:51:55 · 507 阅读 · 1 评论 -
算法设计与分析小作业
给定平面中的n个点(x1, y1), (x2, y2) , . . . , (xn, yn)SSE(i, j) = 点集{pi, pi+1 , . . . , pj}的拟合误差S。x1 < x2 < ... < xn, 寻找线段序列最小化代价函数f(x)。边界情况:当j=0,1,2时,OPT(j)=0,因为两个数据点不需要拟合。OPT(j) = 点集p1, p2 , . . . , pj的最小代价。如果每个线段拟合误差SSE过大,也不是好的方案。OPT(j)代表前j个数据点的最小代价。原创 2023-04-26 19:23:59 · 184 阅读 · 1 评论