区间最大值

本题显而易见的暴力会超时,考虑优化循环或者找规律,显然题目给的数据太小,所以我们用n=1001打表找规律。

打表程序:

#include<iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
int main(){
	int n=1001,m;
	for(int i=1;i<=n;i++){
		int x=n%i;
		cout<<n/i<<" "<<x<<endl;//n/i是倍数
	} 
	return 0;
}

通过观察数据我们发现,当n/i相同时n%i是逐渐递减的,(且i>n/2时n/i相同,所以i>n/2时一直递减,所以可以将其分为两大种情况:r>n/2,r<=n/2)

所以当n/i=x(常数)时的第一个数的n%i最大,因此我们只需要把每一个n/i的第一个数存入堆中即可实现优化循环(每一次只需遍历堆即可找到最大值,而且这个堆的数据很少,n=1001才有30几个最大值)

再对这个堆的循环优化,我们发现,每一个最大值也是递增的(除了前面几个(1001倍到77倍不符合))所以我们可以从后往前进行遍历每当遍历到最大值时即可退出循环。(这一步不太严谨,其实不用跳出好像也能过)

#include<iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
int main(){
	int n,m;
	int xb[100000],tt=-1,bs=-1;
	cin>>n>>m;
	for(int i=1;i<=n/2;i++){
		if(bs!=n/i){
			xb[++tt]=i;
			//cout<<xb[tt]<<" "<<tt<<endl;
			bs=n/i;
		}
	}
	for(int i=0;i<m;i++){
		int l,r;
		cin>>l>>r;
		if(r>n/2+1){
			if(l<=n/2+1){
				int x=n%(n/2+1);
				cout<<x<<endl;
			}
			else{
				int x=n%l;
				cout<<x<<endl;
			}
		}
		else if(r<=n/2){
			int ans=-1;
			for(int j=tt;j>=0;j--){
				if(xb[j]<l) break;
				if(xb[j]<=r&&xb[j]>=l){
					ans=xb[j];
					break;
				}
			}
			if(ans==-1) ans=l;
			int x=n%ans;
			cout<<x<<endl;
		}
	}
	return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线段树是一种非常高效的数据结构,它通常用于处理区间查询问题,例如区间最大值、最小值、总和等。在线段树求区间最大值的问题中,线段树允许我们快速地对一个区间内的元素进行查询和修改操作。 线段树的构建过程是这样的:首先,我们将一个包含n个元素的数组构建为一个完全二叉树,其中每个节点代表原始数组中的一个区间。对于数组中的每个元素,它对应树中的叶子节点,而根节点则代表整个数组的区间[0, n-1]。对于非叶子节点,它的左子节点代表区间[l, mid],右子节点代表区间[mid+1, r],其中mid=(l+r)/2。 构建线段树后,进行区间最大值查询的过程如下: 1. 从根节点开始,判断查询区间是否与当前节点代表的区间完全重合。如果是,则直接返回当前节点的最大值。 2. 如果查询区间部分重合,递归地在左子区间或右子区间(或两者)中进行查询。 3. 最后,合并从左右子区间得到的最大值,返回查询区间最大值。 此外,如果数组中的元素发生变化,线段树还支持快速更新操作。当我们更新数组中的一个元素时,只需要在对应的叶子节点更新线段树,并递归地向上更新父节点的值,直到根节点。 以下是使用C++实现线段树求区间最大值的一个简单示例代码: ```cpp #include <iostream> #include <algorithm> using namespace std; const int MAXN = 100005; // 根据实际情况定义数组的最大长度 int segtree[4 * MAXN]; // 分配足够大的空间,线段树从1开始索引 // 构建线段树 void build(int node, int start, int end, int arr[]) { if (start == end) { segtree[node] = arr[start]; // 叶子节点直接存储数组元素 } else { int mid = (start + end) / 2; build(node * 2, start, mid, arr); // 构建左子树 build(node * 2 + 1, mid + 1, end, arr); // 构建右子树 segtree[node] = max(segtree[node * 2], segtree[node * 2 + 1]); // 合并子区间最大值 } } // 查询区间最大值 int query(int node, int start, int end, int L, int R) { if (R < start || end < L) { return INT_MIN; // 区间不相交时返回最小值 } if (L <= start && end <= R) { return segtree[node]; // 完全包含在查询区间内时直接返回值 } int mid = (start + end) / 2; int max_left = query(node * 2, start, mid, L, R); // 查询左子区间 int max_right = query(node * 2 + 1, mid + 1, end, L, R); // 查询右子区间 return max(max_left, max_right); // 返回左右子区间最大值的较大者 } int main() { int arr[MAXN]; // 假设已经填充了arr数组 build(1, 0, MAXN - 1, arr); // 从根节点开始构建线段树 // 假设要查询区间[L, R]的最大值 int L = ...; // 起始位置 int R = ...; // 结束位置 cout << "区间最大值为: " << query(1, 0, MAXN - 1, L, R) << endl; return 0; } ``` 在上述代码中,我们没有包含具体的数组数据和查询区间,因为这些信息依赖于具体的问题场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值