题目描述
农夫约翰在他的田地中放置了 N 个干草捆。
我们将这个田地视为一个 1,000,000×1,000,000 的方格矩阵,每个方格均为 1×1大小。
每个干草捆分布在其中一个方格内,没有两个干草捆在同一个方格内。
约翰注意到,他所有的干草捆共同组成了一个大的连通区域,这意味着从任何干草捆开始,通过一系列的向东或西或南或北直接移动至相邻干草捆的操作,可以到达任意其他干草捆。
干草捆组成的连通区域中可能包含“洞”----完全被干草捆包围的空区域。
请帮助约翰确定他的干草捆组成的区域的周长。
请注意,洞不会增加周长。
输入格式
第一行包含整数 N。
接下来 N 行,每行包含两个整数 x,y,表示其中一个干草捆的坐标为 (x,y)。
(1,1)(1,1) 是约翰田地的左下角方格,(1000000,1000000) 是约翰田地的右上角方格。
输出格式
输出干草捆组成的区域的周长。
数据范围
1≤N≤50000,
1≤x,y≤106
思路:
因为点的数据只有五万而且是联通的(x,y相差不超过五万),用二维的map可以直接做到存储点的数据,标记最下端的一个点的相邻的没有草堆的点作为搜索起点(搜索起点可任选边界点)对地图进行深搜,当搜到周围没有草堆或者已经遍历过时退出。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <map>
using namespace std;
map<int, map<int,int> > mat1,mat2;
int minx=0x3f3f3f3f,miny=0x3f3f3f3f;
int n,ans;
int pdx[8]={-1,0,1,-1,1,-1,0,1};
int pdy[8]={-1,-1,-1,0,0,1,1,1};
int px[4]={1,0,-1,0};
int py[4]={0,1,0,-1};
int find(int x,int y){
int ans1=0;
for(int i=0;i<8;i++){
int a=x+pdx[i],b=y+pdy[i];
if(mat1[b][a]==1) ans1++;
}
return ans1;
}
void dfs(int x,int y){
if(find(x,y)==0||mat2[y][x]==1){
return ;
}
mat2[y][x]=1;
for(int i=0;i<4;i++){
int a=x+px[i],b=y+py[i];
if(mat1[b][a]==1) ans++;
else if(mat2[b][a]==0){
dfs(a,b);
}
}
}
int main(){
cin>>n;
while(n--){
int x,y;
cin>>x>>y;
mat1[y][x]=1;
if(miny>=y){
if(miny>y){
miny=y;
minx=x;
}
else if(minx>x){
miny=y;
minx=x;
}
}
}
minx--;
miny--;
dfs(minx,miny);
cout<<ans<<endl;
return 0;
}