(dfs+map(离散化))Perimeter

题目描述

农夫约翰在他的田地中放置了 N 个干草捆。

我们将这个田地视为一个 1,000,000×1,000,000 的方格矩阵,每个方格均为 1×1大小。

每个干草捆分布在其中一个方格内,没有两个干草捆在同一个方格内。

约翰注意到,他所有的干草捆共同组成了一个大的连通区域,这意味着从任何干草捆开始,通过一系列的向东或西或南或北直接移动至相邻干草捆的操作,可以到达任意其他干草捆。

干草捆组成的连通区域中可能包含“洞”----完全被干草捆包围的空区域。

请帮助约翰确定他的干草捆组成的区域的周长。

请注意,洞不会增加周长。

输入格式

第一行包含整数 N。

接下来 N 行,每行包含两个整数 x,y,表示其中一个干草捆的坐标为 (x,y)。

(1,1)(1,1) 是约翰田地的左下角方格,(1000000,1000000) 是约翰田地的右上角方格。

输出格式

输出干草捆组成的区域的周长。

数据范围

1≤N≤50000,
1≤x,y≤106

 思路:

因为点的数据只有五万而且是联通的(x,y相差不超过五万),用二维的map可以直接做到存储点的数据,标记最下端的一个点的相邻的没有草堆的点作为搜索起点(搜索起点可任选边界点)对地图进行深搜,当搜到周围没有草堆或者已经遍历过时退出。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <map>
using namespace std;
map<int, map<int,int> > mat1,mat2;
int minx=0x3f3f3f3f,miny=0x3f3f3f3f;
int n,ans;
int pdx[8]={-1,0,1,-1,1,-1,0,1};
int pdy[8]={-1,-1,-1,0,0,1,1,1};
int px[4]={1,0,-1,0};
int py[4]={0,1,0,-1};

int find(int x,int y){
	int ans1=0;
	for(int i=0;i<8;i++){
		int a=x+pdx[i],b=y+pdy[i];
		if(mat1[b][a]==1) ans1++;
	}
	return ans1;
}

void dfs(int x,int y){
	if(find(x,y)==0||mat2[y][x]==1){
		return ;
	}
	mat2[y][x]=1;
	for(int i=0;i<4;i++){
		int a=x+px[i],b=y+py[i];
		if(mat1[b][a]==1) ans++;
		else if(mat2[b][a]==0){
			dfs(a,b);
		}
	}
}

int main(){
	cin>>n;
	while(n--){
		int x,y;
		cin>>x>>y;
		mat1[y][x]=1;
		if(miny>=y){
			if(miny>y){
				miny=y;
				minx=x;
			}
			else if(minx>x){
				miny=y;
				minx=x;
			}
		}
	}	
	minx--;
	miny--;
	dfs(minx,miny);
	cout<<ans<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值