思路:
将G和L分别存入一个数组,排序后任选其中一个数组进行循环,假设a[i]以前的所有数据均为非法,a[i]以后的数据均为合法,记录数据。再对另一数组操作,所有与a[i]相违背的都是非法(因为数组有序,所以有分界线a[i]>=b[i]),所以对于i位置来说违法数据个数即为i-1+y-j,对i遍历求min即为答案
题干:
奶牛 Bessie 躲在数轴上的某处。
农夫约翰的 N 头奶牛中的每头奶牛都有一条信息要分享:第 i 头奶牛说 Bessie 躲在小于或等于 pi 的某个位置,或者说 Bessie 躲在大于或等于 pi 的某个位置。
不幸的是,可能不存在躲藏位置与所有奶牛的回答均一致,这意味着并非所有奶牛都在说真话。
计算在撒谎的奶牛的最小数量。
输入格式
输入的第一行包含 N。
以下 N 行每行包含字符 L 或 G,之后是一个整数 pi。L 表示第 i 头奶牛说 Bessie 的躲藏位置小于或等于 pi,而 G 表示第 i 头奶牛说 Bessie 的躲藏位置大于或等于 pi。
输出格式
输出在撒谎的奶牛的最小数量。
数据范围
1≤N≤1000,
0≤pi≤109。
输入样例1:
2 G 3 L 5
输出样例1:
0
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1010,M=0x3f3f3f3f;
typedef long long LL;
int n,t,x,y,a[N],b[N],ans;
char c;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("\n%c%d",&c,&t);
if(c=='L') a[++x]=t;
else b[++y]=t;
}
sort(a+1,a+x+1);
sort(b+1,b+y+1);
ans=n-1;
for(int i=1;i<=x;i++)
{
for(int j=1;j<=y;j++)
{
if(a[i]>=b[j]) ans=min(ans,i-1+y-j);
else break;
}
}
printf("%d\n",ans);
return 0;
}