Counting Liars

思路:

将G和L分别存入一个数组,排序后任选其中一个数组进行循环,假设a[i]以前的所有数据均为非法,a[i]以后的数据均为合法,记录数据。再对另一数组操作,所有与a[i]相违背的都是非法(因为数组有序,所以有分界线a[i]>=b[i]),所以对于i位置来说违法数据个数即为i-1+y-j,对i遍历求min即为答案

题干:

奶牛 Bessie 躲在数轴上的某处。 

农夫约翰的 N 头奶牛中的每头奶牛都有一条信息要分享:第 i 头奶牛说 Bessie 躲在小于或等于 pi 的某个位置,或者说 Bessie 躲在大于或等于 pi 的某个位置。 

不幸的是,可能不存在躲藏位置与所有奶牛的回答均一致,这意味着并非所有奶牛都在说真话。 

计算在撒谎的奶牛的最小数量。 

输入格式

输入的第一行包含 N。 

以下 N 行每行包含字符 L 或 G,之后是一个整数 pi。L 表示第 i 头奶牛说 Bessie 的躲藏位置小于或等于 pi,而 G 表示第 i 头奶牛说 Bessie 的躲藏位置大于或等于 pi。 

输出格式

输出在撒谎的奶牛的最小数量。 

数据范围

1≤N≤1000,
0≤pi≤109。 

输入样例1:

2
G 3
L 5

输出样例1:

0
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1010,M=0x3f3f3f3f;
typedef long long LL;
int n,t,x,y,a[N],b[N],ans;
char c;
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("\n%c%d",&c,&t);
		if(c=='L') a[++x]=t;
		else b[++y]=t;
	}
	sort(a+1,a+x+1);
	sort(b+1,b+y+1);
	ans=n-1;
	for(int i=1;i<=x;i++)
	{
		for(int j=1;j<=y;j++)
		{
			if(a[i]>=b[j]) ans=min(ans,i-1+y-j);
			else break;
		}
	}
	printf("%d\n",ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值