深度学习实验
文章平均质量分 96
注:本系列多数代码不知来自何方,若有侵权,联系删除
QomolangmaH
2023年度博客之星Top22
人工智能领域赛道Top2
大三赛道Top2
码龄2-3年赛道Top3
CSDN校园主理人
展开
-
【计算机视觉】三、图像处理——实验:图像去模糊和去噪、提取边缘特征
本文使用不同滤波器实现了图像去模糊、去噪、提取边缘特征原创 2024-03-20 15:00:00 · 2814 阅读 · 0 评论 -
【论文复现】基于CGAN的手写数字生成实验——模型改进
基于CGAN的手写数字生成实验——模型改进:一、 超参数优化:batch size、learning rate、n_critic二、 逐层归一化:BN、LN、IN、GN三、 损失函数改进: MSELoss、CELoss、BCEWithLogitsLoss四、 激活函数选择:ReLU、LeakyReLU、PReLU、ELU、Swish(SiLU)、GELU五、 优化器改进:AdamW、Adamax、RAdam六、 噪声z的分布:均匀分布、拉普拉斯分布、多变量高斯分布七、其余设想原创 2024-01-29 23:45:00 · 1015 阅读 · 0 评论 -
【论文复现】基于CGAN的手写数字生成实验——超参数调整
基于CGAN的手写数字生成实验——超参数调整:一、batch size理论分析定量实验batch size与训练时间关于loss曲线的说明二、epochs定量实验epoch与batch size相同step下不同batch size三、Adam:learning rate四、Adam:weight_decay五、n_criticloss曲线相同step下不同n_critic原创 2024-01-28 23:45:00 · 1316 阅读 · 0 评论 -
【深度学习实验】TensorBoard使用教程【SCALARS、IMAGES、TIME SERIES】
PyTorch下TensorBoard使用教程,详细介绍了SCALARS、IMAGES、TIME SERIES的具体使用原创 2024-01-27 22:00:07 · 2057 阅读 · 0 评论 -
【深度学习实验】图像处理(四):PIL——自定义图像数据增强操作(图像合成;图像融合(高斯掩码))
本实验实现了自定义图像数据增强操作,主要包括图像合成(粘贴组合)、图像融合(创建高斯掩码融合两个图像)原创 2023-12-03 23:09:09 · 1060 阅读 · 1 评论 -
【深度学习实验】图像处理(三):PIL——自定义图像数据增强操作(随机遮挡、擦除、线性混合)
本实验中详细介绍了三种自定义图像数据增强操作:Cutout、Random Erasing 和 Mixup(遮挡、随机擦除和图像混合)原创 2023-11-30 15:08:17 · 1206 阅读 · 0 评论 -
【深度学习实验】图像处理(二):PIL 和 PyTorch(transforms)中的图像处理与随机图片增强
本实验介绍了通过PIL库完成图片生成、合成、添加文字等操作,并分别使用PIL和PyTorch中的transforms模块实现图像增强功能。原创 2023-11-26 22:42:15 · 1074 阅读 · 1 评论 -
【深度学习实验】图像处理(一):Python Imaging Library(PIL)库:图像读取、写入、复制、粘贴、几何变换、图像增强、图像滤波
本实验介绍了 PIL 的基本用法,主要包括图像读取、写入、复制、粘贴、几何变换以及图像增强、图像滤波等方面原创 2023-11-23 16:23:27 · 2285 阅读 · 0 评论 -
【深度学习实验】注意力机制(四):点积注意力与缩放点积注意力之比较
本文介绍了注意力机制中的点积注意力与缩放点积注意力模型之比较原创 2023-11-21 19:57:12 · 1294 阅读 · 0 评论 -
【深度学习实验】注意力机制(三):打分函数——加性注意力模型
本文介绍了深度学习注意力机制中的打分函数——加性注意力模型(使用掩码Softmax)原创 2023-11-20 20:34:25 · 993 阅读 · 0 评论 -
【深度学习实验】注意力机制(二):掩码Softmax 操作
本文介绍了深度学习注意力机制中的掩码Softmax 操作原创 2023-11-19 17:13:41 · 1721 阅读 · 4 评论 -
【深度学习实验】注意力机制(一):注意力权重矩阵可视化(矩阵热图heatmap)
本文介绍了注意力权重矩阵的可视化:矩阵热图heatmap的绘制原创 2023-11-19 16:48:09 · 12040 阅读 · 10 评论 -
【深度学习实验】网络优化与正则化(七):超参数优化方法——网格搜索、随机搜索、贝叶斯优化、动态资源分配、神经架构搜索
本文介绍了神经网络优化的逐层归一化方法,包括批量归一化、层归一化、权重归一化(略)、局部响应归一化(略)等内容原创 2023-11-17 19:22:40 · 1392 阅读 · 0 评论 -
【深度学习实验】网络优化与正则化(六):逐层归一化方法——批量归一化、层归一化、权重归一化、局部响应归一化
本文介绍了神经网络优化的逐层归一化方法,包括批量归一化、层归一化、权重归一化(略)、局部响应归一化(略)等内容原创 2023-11-16 20:33:21 · 764 阅读 · 0 评论 -
【深度学习实验】网络优化与正则化(五):数据预处理详解——标准化、归一化、白化、去除异常值、处理缺失值
本文介绍了神经网络中的数据预处理方法,包括标准化、归一化、白化、去除异常值、处理缺失值等原创 2023-11-15 22:13:29 · 2018 阅读 · 2 评论 -
【深度学习实验】网络优化与正则化(四):参数初始化及其Pytorch实现——基于固定方差的初始化(高斯、均匀分布),基于方差缩放的初始化(Xavier、He),正交初始化
本文介绍了神经网络优化——参数初始化方法,包括基于固定方差的参数初始化(高斯、均匀分布),基于方差缩放的参数初始化(Xavier、He),正交初始化等原创 2023-11-14 23:42:17 · 784 阅读 · 0 评论 -
【深度学习实验】网络优化与正则化(三):随机梯度下降的改进——Adam算法详解(Adam≈梯度方向优化Momentum+自适应学习率RMSprop)
本文详细介绍了随机梯度下降算法的改进——Adam算法(Adam≈梯度方向优化Momentum+自适应学习率RMSprop)原创 2023-11-13 15:02:15 · 1189 阅读 · 1 评论 -
【Python报错合集】Python元组tuple、张量tensor(IndexError、TypeError、RuntimeError……)~持续更新
【Python报错合集】Python元组tuple、张量tensor(IndexError、TypeError、RuntimeError……)原创 2023-11-06 18:13:32 · 3783 阅读 · 0 评论 -
【深度学习实验】网络优化与正则化(二):基于自适应学习率的优化算法详解:Adagrad、Adadelta、RMSprop
本文详细介绍了基于自适应学习率的优化算法,包括Adagrad、Adadelta、RMSprop算法原创 2023-10-30 14:35:58 · 764 阅读 · 0 评论 -
【深度学习实验】网络优化与正则化(一):优化算法:使用动量优化的随机梯度下降算法(Stochastic Gradient Descent with Momentum)
深度神经网络在机器学习中应用时面临两类主要问题:优化问题和泛化问题,本文将介绍使用动量优化的随机梯度下降算法(Stochastic Gradient Descent with Momentum)原创 2023-10-26 21:39:53 · 614 阅读 · 0 评论 -
【深度学习实验】循环神经网络(五):基于GRU的语言模型训练(包括自定义门控循环单元GRU)
本实验实现了基于GRU的语言模型训练,包括自定义门控循环单元GRU原创 2023-10-22 00:13:19 · 3256 阅读 · 1 评论 -
【深度学习实验】循环神经网络(四):基于 LSTM 的语言模型训练
基于 LSTM 的语言模型训练原创 2023-10-16 21:26:50 · 1118 阅读 · 0 评论 -
【深度学习实验】循环神经网络(三):门控制——自定义循环神经网络LSTM(长短期记忆网络)模型
LSTM(长短期记忆网络)是一种循环神经网络(RNN)的变体,用于处理序列数据。它具有记忆单元和门控机制,可以有效地捕捉长期依赖关系。原创 2023-10-16 20:43:57 · 1950 阅读 · 0 评论 -
【深度学习实验】循环神经网络(二):使用循环神经网络(RNN)模型进行序列数据的预测
本实验实现了一个简单的循环神经网络(RNN)模型,并使用该模型进行序列数据的预测。原创 2023-10-11 21:11:14 · 3389 阅读 · 1 评论 -
【深度学习实验】循环神经网络(一):循环神经网络(RNN)模型的实现与梯度裁剪
本实验介绍了一个简单的循环神经网络(RNN)模型,并探讨了梯度裁剪在模型训练中的应用。原创 2023-10-10 23:29:35 · 781 阅读 · 2 评论 -
【深度学习实验】卷积神经网络(八):使用深度残差神经网络ResNet完成图片多分类任务
本实验使用深度残差神经网络ResNet完成了图片多分类任务(CIFAR-10数据集,包含10个种类)原创 2023-10-09 22:09:27 · 1716 阅读 · 2 评论 -
【深度学习实验】卷积神经网络(七):实现深度残差神经网络ResNet
本实验实现了实现深度残差神经网络ResNet。原创 2023-10-09 19:08:25 · 739 阅读 · 0 评论 -
【深度学习实验】卷积神经网络(六):自定义卷积神经网络模型(VGG)实现图片多分类任务
本实验实现了自定义的卷积神经网络模型(VGG),并实现图片多分类任务(CIFAR-10数据集,包含10个种类)原创 2023-09-28 22:04:14 · 3357 阅读 · 2 评论 -
【深度学习实验】卷积神经网络(五):深度卷积神经网络经典模型——VGG网络(卷积层、池化层、全连接层)
本实验实现了深度卷积神经网络中的经典模型——VGG网络(简化版),并基于此完成图像分类任务。原创 2023-09-27 15:41:23 · 900 阅读 · 0 评论 -
【深度学习实验】卷积神经网络(四):自定义二维汇聚层:最大汇聚(max pooling)和平均汇聚(average pooling)
本实验实现了一个自定义的二维汇聚层(池化层),包括前向传播中进行最大池化、平均池化等操作。原创 2023-09-27 15:36:04 · 513 阅读 · 0 评论 -
【深度学习实验】卷积神经网络(三):自定义二维卷积层:步长、填充、输入输出通道
本实验实现了二维卷积神经网络卷积层设置步长、填充、输入输出通道等功能。原创 2023-09-26 17:13:41 · 928 阅读 · 0 评论 -
【深度学习实验】卷积神经网络(二):自定义简单的二维卷积神经网络
本实验实现了一个简单的二维卷积神经网络,包括二维互相关运算函数和自定义二维卷积层类,并对一个随机生成是二维张量进行了卷积操作。原创 2023-09-25 20:34:26 · 901 阅读 · 0 评论 -
【深度学习实验】卷积神经网络(一):卷积运算及其Pytorch实现(一维卷积:窄卷积、宽卷积、等宽卷积;二维卷积)
本文主要介绍了卷积运算及其Pytorch实现,包括一维卷积(窄卷积、宽卷积、等宽卷积)、二维卷积。原创 2023-09-25 22:03:52 · 3383 阅读 · 0 评论 -
【深度学习实验】前馈神经网络(final):自定义鸢尾花分类前馈神经网络模型并进行训练及评价
本实验实现了鸢尾花分类前馈神经网络模型,并进行了训练和评价。原创 2023-09-23 22:48:08 · 1319 阅读 · 0 评论 -
【深度学习实验】前馈神经网络(九):整合训练、评估、预测过程(Runner)
本实验实现了Runner类,用于模型的训练、评估和预测。通过该类,可以更方便地进行模型的训练和评估,并获取训练过程中的损失变化和评价指标的变化情况等。原创 2023-09-23 22:41:52 · 787 阅读 · 0 评论 -
【深度学习实验】前馈神经网络(八):模型评价(自定义支持分批进行评价的Accuracy类)
本实验实现了一个计算预测准确率的Accuracy类,支持对每一个回合中每批数据进行评价,并将结果累积,最终获得整批数据的评价结果。原创 2023-09-22 22:34:54 · 529 阅读 · 0 评论 -
【深度学习实验】前馈神经网络(七):批量加载数据(直接加载数据→定义类封装数据)
本文介绍了如何基于鸢尾花数据集构建一个数据迭代器,以便在每次迭代时从全部数据集中获取指定数量的数据。(借助深度学习框架中的Dataset类和DataLoader类来实现此功能。)原创 2023-09-22 21:04:55 · 577 阅读 · 0 评论 -
【深度学习实验】前馈神经网络(六):自动求导
本文介绍了Pytorch张量自动求导机制原创 2023-09-21 21:46:43 · 457 阅读 · 0 评论 -
【深度学习实验】前馈神经网络(五):自定义线性模型:前向传播、反向传播算法(封装参数)
本实验实现了线性模型的前向传播和反向传播原创 2023-09-21 11:59:39 · 769 阅读 · 0 评论 -
【深度学习实验】前馈神经网络(四):自定义逻辑回归模型:前向传播、反向传播算法
本实验实现了逻辑回归的前向传播和反向传播原创 2023-09-21 11:10:43 · 607 阅读 · 0 评论