L2-025 分而治之

文章讨论了如何通过编程实现兵家策略——分而治之,判断在给定的城市网络中,参谋部提出的攻占部分城市的方案是否可行。关键在于检查攻占后剩余城市之间的连通性。
摘要由CSDN通过智能技术生成

分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可行性。

输入格式:

输入在第一行给出两个正整数 N 和 M(均不超过10 000),分别为敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数。随后 M 行,每行给出一条通路所连接的两个城市的编号,其间以一个空格分隔。在城市信息之后给出参谋部的系列方案,即一个正整数 K (≤ 100)和随后的 K 行方案,每行按以下格式给出:

Np v[1] v[2] ... v[Np]

其中 Np 是该方案中计划攻下的城市数量,后面的系列 v[i] 是计划攻下的城市编号。

输出格式:

对每一套方案,如果可行就输出YES,否则输出NO

输入样例:

10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 10
2 4
5
4 10 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2

输出样例:

NO
YES
YES
NO
NO

代码:

先记录一下连通的城市编号,把方案里的城市标记为攻下,然后遍历连通的城市,如果原来连通的两个城市都没有被攻下,则说明这条通路依然存在,该fang

#include<bits/stdc++.h>
using namespace std;
int vis[10005];
int n,m,k;
struct Node{
	int a;
	int b;
}node[10005];
int main(){
	cin>>n>>m;
	for(int i = 0;i<m;i++){
		int x,y;
		cin>>node[i].a>>node[i].b;//把连通的两个城市记录下来 
	}
	cin>>k;
	while(k--){
		int p,x;
		int flag = 0;
		memset(vis,0,sizeof(vis));
		cin>>p;
		while(p--){
			cin>>x;
			vis[x] = 1;//将攻下的城市标记一下 
		}
		for(int i = 0;i<m;i++){
			//如果连通的两个城市都没有被攻下,说明还存在通路 
			if(vis[node[i].a]==0 && vis[node[i].b]==0){
				flag = 1;  //还存在通路,标记flag为1 
				break;
			}
		}
		if(flag==0){//flag为0,说明不存在通路,方案可行 
			cout<<"YES"<<endl;
		}else{  //flag为1;说明存在通路,方案不可行 
			cout<<"NO"<<endl;
		}
		
	}
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值