分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可行性。
输入格式:
输入在第一行给出两个正整数 N 和 M(均不超过10 000),分别为敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数。随后 M 行,每行给出一条通路所连接的两个城市的编号,其间以一个空格分隔。在城市信息之后给出参谋部的系列方案,即一个正整数 K (≤ 100)和随后的 K 行方案,每行按以下格式给出:
Np v[1] v[2] ... v[Np]
其中 Np
是该方案中计划攻下的城市数量,后面的系列 v[i]
是计划攻下的城市编号。
输出格式:
对每一套方案,如果可行就输出YES
,否则输出NO
。
输入样例:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 10
2 4
5
4 10 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2
输出样例:
NO
YES
YES
NO
NO
代码:
先记录一下连通的城市编号,把方案里的城市标记为攻下,然后遍历连通的城市,如果原来连通的两个城市都没有被攻下,则说明这条通路依然存在,该fang
#include<bits/stdc++.h>
using namespace std;
int vis[10005];
int n,m,k;
struct Node{
int a;
int b;
}node[10005];
int main(){
cin>>n>>m;
for(int i = 0;i<m;i++){
int x,y;
cin>>node[i].a>>node[i].b;//把连通的两个城市记录下来
}
cin>>k;
while(k--){
int p,x;
int flag = 0;
memset(vis,0,sizeof(vis));
cin>>p;
while(p--){
cin>>x;
vis[x] = 1;//将攻下的城市标记一下
}
for(int i = 0;i<m;i++){
//如果连通的两个城市都没有被攻下,说明还存在通路
if(vis[node[i].a]==0 && vis[node[i].b]==0){
flag = 1; //还存在通路,标记flag为1
break;
}
}
if(flag==0){//flag为0,说明不存在通路,方案可行
cout<<"YES"<<endl;
}else{ //flag为1;说明存在通路,方案不可行
cout<<"NO"<<endl;
}
}
}