因式分解(递归)

本文介绍了一段C++代码,用于计算大于1的自然数N的所有不同因式分解方案总数,通过递归方法实现,以12为例展示如何得到8种分解方案。
摘要由CSDN通过智能技术生成

将大于1的自然数N进行因式分解,计算N的所有形式不同的因式分解方案总数。例如,N=12,共有8种分解方案,它们分别是

12=12

12=6*2

12=4*3

12=3*4

12=3*2*2

12=2*6

12=2*3*2

12=2*2*3

输入格式

一个整数N (1≤N≤2000000000)

输出格式

N的因式分解方案总数。

样例

输入样例
12
输出样例
8

 代码:

#include<bits/stdc++.h>
using namespace std;
int n,sum = 1;

//递归因式分解 
int f(int n){
	for(int i = 2;i<n;i++){
		if(n%i==0){
			//如果能分解,再进一步进行分解 
			f(n/i);
			sum++;
		}
	}
}
int main(){
	cin>>n;
	//调用函数 
	f(n);
	cout<<sum;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值