24.8.12学习笔记

Visdom 是一个用于可视化和跟踪模型训练过程的 Python 库,它提供了一个基于 web 的界面,可以实时显示训练过程中的各种指标和图像。Visdom 特别适用于深度学习,因为它可以显示损失函数、准确率、混淆矩阵等,还可以显示模型的权重、激活图等。

Visdom 的主要特点包括:

  • 实时数据可视化:可以显示图表、图像、视频等。
  • 支持多种数据格式:可以显示标量、图像、文本等。
  • 易于集成:可以轻松集成到现有的 Python 代码中。
  • 支持多种后端:可以使用不同的后端存储数据,如内存、文件系统或数据库。

在深度学习中,鞍点(saddle points)是指损失函数中的某些点,在这些点上梯度为零但并不是局部最小值。这些点在高维空间中非常常见,特别是在深度神经网络的训练过程中。鞍点的存在可能会导致优化算法陷入其中,从而影响模型的学习效率和最终性能。

对于鞍点,有以下几点需要注意:

  1. 定义:在数学上,一个鞍点是一个临界点,在该点上所有方向的导数都为零,但不是局部极小值也不是局部极大值。在二维空间中,鞍点看起来像是马鞍的形状,但在更高维度的空间中,这种形状更为复杂。

  2. 影响:在深度学习中,鞍点可能导致梯度下降等优化算法收敛缓慢或者被困住,因为它们看起来像是局部最小值,但实际上并不是。

  3. 解决方法

    • 使用动量(Momentum)可以帮助算法逃离鞍点,因为它可以提供足够的惯性来“滚过”鞍点。
    • 随机梯度下降(SGD)的随机性也有助于跳出鞍点。
    • 更高级的优化方法如Adam、RMSprop等通常也能更有效地处理鞍点问题。

随机梯度下降(Stochastic Gradient Descent, SGD)是一种常用的优化算法,用于在机器学习和深度学习中更新模型参数以最小化损失函数。与批量梯度下降(Batch Gradient Descent)相比,SGD每次只使用一个样本(或一小批样本)来计算梯度并更新参数,这使得它在大型数据集上的计算效率更高。

以下是SGD的一些关键特点:

  1. 更新规则:在每次迭代中,SGD会随机选取一个样本(或一小批样本),然后根据这个样本的梯度来更新模型参数。

  2. 计算效率:由于每次只使用一个样本或少量样本进行梯度计算,因此每次迭代所需的计算资源较少。这使得SGD非常适合大规模数据集。

  3. 避免局部最小值:SGD的随机性有助于模型跳出局部最小值,尤其是在非凸优化问题中,这种随机性有助于探索不同的解空间。

  4. 学习率调整:学习率αα 是一个超参数,需要适当调整。初始学习率通常较大,随着训练过程逐渐减小。这样可以在开始阶段快速收敛,然后在后期进行更精细的调整。

  5. 变体:有许多基于SGD的优化算法,例如带有动量(Momentum)的SGD、AdaGrad、RMSprop 和 Adam 等。这些算法通过引入额外的技术来改进基本的SGD,比如累积历史梯度信息或自适应学习率。

  6. 实践中的应用:在实践中,SGD通常与小批量(Mini-batch)相结合,即每次迭代使用一个小批次的数据来计算梯度。这既保持了SGD的计算效率,又提高了梯度估计的稳定性。

直方图阈值(Histogram Thresholding)是一种图像处理技术,用于将灰度图像转换成二值图像。简单来说,就是将图像中的像素分为前景和背景两部分,通常用于图像分割任务。

直方图的概念

首先,我们需要理解什么是直方图。在图像处理中,直方图是用来表示图像中不同灰度级出现频率的统计图表。例如,一张灰度图像可能包含0到255的不同灰度级,直方图则显示了每个灰度级在图像中出现的次数。

直方图阈值的基本思想

直方图阈值的基本思想是找到一个合适的阈值(Threshold),将图像中的像素分成两类:

  • 前景:高于阈值的像素被认为是前景,通常代表我们要关注的对象。
  • 背景:低于阈值的像素被认为是背景,通常代表不需要关注的部分。

如何确定阈值

确定阈值的方法有很多种,这里介绍一种简单的方法:

  1. 计算直方图:首先计算图像的灰度直方图,得到每个灰度级的频数。
  2. 选择阈值:观察直方图,寻找一个自然的分界点,这个点通常位于前景和背景之间的谷底位置。
  3. 应用阈值:将图像中的所有像素与选定的阈值进行比较:
    • 如果像素值大于阈值,则标记为前景(通常设置为白色或255)。
    • 如果像素值小于等于阈值,则标记为背景(通常设置为黑色或0)。

实际应用示例

假设你有一张灰度图像,你想从中提取出主要对象,步骤如下:

  1. 加载图像:读取灰度图像。
  2. 计算直方图:计算图像的灰度直方图。
  3. 观察直方图:观察直方图,寻找一个明显的峰值间隔,这个间隔通常是前景和背景之间的分界。
  4. 选择阈值:根据观察结果选择一个合适的阈值。
  5. 应用阈值:将图像中的像素值与阈值进行比较,高于阈值的标记为前景,低于阈值的标记为背景

在图像处理和计算机视觉中,阈值处理是一种基本的图像分割技术,用于将图像转换为二值图像,即只包含黑色和白色(或前景和背景)的图像。以下是几种常见的阈值确定方法:

  1. 三角法阈值(Triangle Method): 三角法是一种基于图像直方图的全局阈值确定方法。首先,计算图像的直方图,然后找到直方图的两个峰值,这两个峰值分别对应于前景和背景的像素强度。连接这两个峰值,形成一条线段,这条线段与直方图的基线(x轴)相交于一点,这个交点就是阈值。

  2. 迭代法阈值(Iterative Method) 迭代法是一种动态确定阈值的方法,它通过迭代过程来优化阈值。在每次迭代中,使用当前的阈值将图像分割为前景和背景,然后根据分割结果调整阈值。这个过程会一直进行,直到满足某个停止条件,例如阈值的变化小于某个预设的阈值或达到预设的迭代次数。

  3. 大津法阈值(Otsu's Method) 大津法是一种自适应阈值确定方法,它通过最小化类内方差来确定最佳阈值。首先,计算所有可能的阈值对应的类间方差和类内方差。然后,选择使得类内方差最小的阈值作为最佳阈值。这种方法假设图像中存在两个类别(前景和背景),并且它们的分布是高斯分布。

  4. 自适应阈值(Adaptive Thresholding) 自适应阈值方法不使用单一的全局阈值,而是根据图像的局部特性来确定阈值。这种方法通常包括以下几个步骤:

    • 将图像划分为多个小区域(例如,使用滑动窗口)。
    • 对每个小区域计算一个局部阈值,这个阈值可以基于该区域的均值、中值或其他统计量。
    • 使用局部阈值对每个小区域进行二值化。

自适应阈值方法特别适合于光照不均匀或具有复杂背景的图像,因为它可以根据图像的局部特性进行调整。

总结

  • 三角法:基于直方图的形状来确定阈值。
  • 迭代法:通过迭代过程逐步逼近最佳阈值。
  • 大津法:寻找使类间方差最大的阈值。
  • 自适应阈值:根据局部亮度变化来确定每个区域的阈值。

  • 6
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值