24.7.30学习笔记

图像增强

反转变换

反转变换是一种非常简单的图像处理方法,它的主要目的是将图像的明暗关系反转过来。比如,原本比较亮的部分会变暗,而原本比较暗的部分则会变亮。

假设你有一张黑白照片,每个像素点的亮度值从 0 到 255(0 表示黑色,255 表示白色)。反转变换就是用最大值减去每个像素点的亮度值。数学上表示为:

g(x)=L−f(x)

这里 f(x)f(x) 是原始图像中某个像素的亮度值,g(x) 是变换后图像中对应的像素亮度值,而 L 是亮度的最大值,在8位灰度图中通常为 255。

对数变换

对数变换主要用于扩展图像中较暗部分的对比度,同时压缩较亮部分的对比度。简单来说,就是让图像的暗部细节更加明显

对数变换的基本公式如下:

g(x)=c*log(1+f(x))

其中 f(x) 和 g(x)分别代表原始图像和变换后的图像中的像素值,而 c 是一个正比例常数,用来控制输出图像的亮度范围。对数函数的特点是增长速度越来越慢,所以当输入的像素值较大时,其增长速度就变慢了,从而使得图像的高亮部分被压缩,而低亮度部分的细节得到放大。

总结

  • 反转变换:反转图像的明暗,适用于提高某些情况下图像特征的可见性,比如黑白图像的轮廓检测。
  • 对数变换:增加图像暗部的对比度,使暗部细节更清晰,适合于增强图像整体的视觉效果。

幂次变换(也称为伽马校正或伽马变换)是数字图像处理中一种非常有用的非线性变换技术,它可以通过调整图像的亮度和对比度来增强图像的视觉效果。与对数变换类似,幂次变换也可以用于扩展或压缩图像的亮度范围,但它提供了一种更为灵活的方式来调整图像的对比度。

幂次变换的特性

  • 当 γ>1 时,变换倾向于压缩图像的高亮度区域,并扩展低亮度区域。这种情况下,图像的整体对比度会降低,但暗部细节会变得更加明显。(类似于对数变换)
  • 当 γ<1时,变换倾向于扩展图像的高亮度区域,并压缩低亮度区域。这样可以使图像的整体对比度增加,尤其是亮部区域的细节会变得更加突出
  • 特别的,当 γ=1γ=1 时,幂次变换变为线性变换,即 g(x)=c⋅f(x)g(x)=c⋅f(x),这相当于没有进行任何非线性变换。

灰度级切片(Gray Level Slicing)是数字图像处理中的一种技术,主要用于突出或增强图像中的特定灰度范围内的细节。这种方法通过选择图像中某一灰度级范围内的像素并对其进行特殊处理来实现。

灰度级切片的基本原理

在灰度图像中,每个像素的值表示该像素的亮度等级,通常范围是从0到255(8位灰度图像)。灰度级切片允许我们对这个灰度范围进行“切片”,也就是选取一个特定的灰度级范围,并对该范围内像素的值进行操作。

灰度级切片的应用方式

  • 仅突出特定灰度级
    • 这种情况下,我们只选择特定灰度级范围内的像素,将它们设置为一个固定的值(通常是白色或黑色),而其他像素保持不变。这样做可以强调图像中的某些特征或区域。
  • 增强特定灰度级
    • 在这种情况下,我们会选择特定灰度级范围内的像素,并对其进行增强处理,比如增加亮度或对比度,而其他像素保持不变。这有助于提高这些区域的可见性。
  • 定义灰度级范围:首先确定要处理的灰度级范围,比如从灰度级50到150。

实现步骤

  • 定义灰度级范围:首先确定要处理的灰度级范围,比如从灰度级50到150。
  • 增强/突出处理
    • 如果是要突出这个范围内的像素,可以将这些像素设置为白色(255),其他像素设置为黑色(0)。
    • 如果是要增强这个范围内的像素,可以使用某种函数(如线性函数、幂次函数等)来调整这些像素的值,以增强它们的亮度或对比度。
  • 首先,遍历图像中的所有像素。
  • 对于灰度级位于100到150之间的像素,将其灰度值设置为255(白色)。
  • 对于不在这个范围内的像素,保持其灰度值不变。

位平面切片(Bit-Plane Slicing)是数字图像处理中的一种技术,它允许我们根据图像数据的位平面来查看或处理图像。位平面切片的基本思想是将图像的每一位单独提取出来,形成一系列独立的图像,每个图像只包含原始图像中对应位的信息。

位平面的概念

在数字图像中,每个像素的颜色或灰度值通常由二进制数字表示。例如,在8位灰度图像中,每个像素的值范围是0到255,可以用8位二进制数表示。这8位分别代表了从最低有效位(LSB, Least Significant Bit)到最高有效位(MSB, Most Significant Bit)的不同权重。

位平面切片的过程

每个位平面都可以构成一幅独立的图像。如果我们只看最低有效位(LSB),图像可能看起来像噪声;而当我们看最高有效位(MSB)时,图像中的主要特征会变得清晰。

去除叠加性噪音是指从信号中消除叠加在其上的随机或非期望成分的过程。在信号处理领域,叠加性噪音通常指的是加性噪音,这种噪音是直接叠加在信号之上的,而不是信号的一部分。

  假设我们有一个被高斯噪音污染的信号,可以使用低通滤波器来去除大部分高频噪音,因为高斯噪音通常分布在较宽的频率范围内,而信号本身往往集中在较低的频率上。

  例如,假设我们有一个简单的模拟信号 s(t),它被高斯噪音 n(t) 污染,形成的受污染信号 y(t)=s(t)+n(t)。为了去除噪音,我们可以使用一个低通滤波器 H(f),它的传递函数在低频区域接近1,在高频区域接近0。这样,当信号经过滤波器后,大部分噪音被衰减,而信号本身得到保持。

  • 分离位平面:将每个像素的二进制表示按照位平面分开。例如,对于8位灰度图像,我们将每个像素的值拆分为8个位,每个位构成一个位平面。
  • 生成位平面图像:对于每个位平面,我们可以构建一个新的图像,其中每个像素只包含该位平面的信息。例如,对于第i位位平面,如果该位是1,则新图像中的对应像素值设为1(或255,取决于如何表示),否则设为0。
  • 假设我们有以下8位灰度图像的一个像素值:

  • 像素值:10101010

  • 第0位位平面(LSB):00000001 → 1

  • 第1位位平面:00000010 → 2

  • 第2位位平面:00000100 → 4

  • 第3位位平面:00001000 → 8

  • 第4位位平面:00010000 → 16

  • 第5位位平面:00100000 → 32

  • 第6位位平面:01000000 → 64

  • 第7位位平面(MSB):10000000 → 128

  • 每个位平面都可以构成一幅独立的图像。如果我们只看最低有效位(LSB),图像可能看起来像噪声;而当我们看最高有效位(MSB)时,图像中的主要特征会变得清晰。

ROC曲线(Receiver Operating Characteristic curve)是一种非常有用的图形化评估方法,主要用于二分类问题。它可以帮助我们了解分类器在不同阈值下性能的变化情况。下面我将用通俗易懂的方式解释如何绘制ROC曲线。

1. 理解基本概念

  • 真阳性率(True Positive Rate, TPR):也被称作敏感度(Sensitivity),表示实际为正类的样本中被正确预测为正类的比例。
  • 假阳性率(False Positive Rate, FPR):表示实际为负类的样本中被错误预测为正类的比例。

2. 准备数据

为了绘制ROC曲线,我们需要知道每个样本被预测为正类的概率。通常情况下,分类模型会输出一个概率值(或得分),我们可以通过调整不同的阈值来决定哪些样本被分类为正类,哪些被分类为负类。

3. 计算TPR和FPR

对于每一个阈值,我们可以计算出相应的TPR和FPR。例如,如果我们设定阈值为0.5,则所有预测概率大于0.5的样本将被分类为正类,否则为负类。基于这种分类,我们可以计算出TPR和FPR。

4. 绘制ROC曲线

  • X轴:代表假阳性率(FPR),范围从0到1。
  • Y轴:代表真阳性率(TPR),范围也是从0到1。

接下来,我们将不同的阈值对应的(TPR, FPR)点连接起来,就得到了ROC曲线。

5. 评价模型

  • AUC(Area Under Curve):ROC曲线下方的面积。AUC越接近1,表示分类器性能越好;AUC接近0.5时,表示分类器的表现接近随机猜测。

实际操作步骤

  1. 获取预测概率:使用模型对测试集中的每个样本进行预测,得到预测为正类的概率。
  2. 选择一系列阈值:例如从0到1之间选取多个阈值。
  3. 计算TPR和FPR:对于每一个阈值,根据预测结果和真实标签计算出TPR和FPR。
  4. 绘制曲线:以FPR为横坐标,TPR为纵坐标,画出ROC曲线。

阈值的理解:

情景设定:

假设你正在开发一款垃圾邮件过滤器。你的算法会为每封邮件分配一个分数,这个分数表示该邮件是垃圾邮件的概率。例如,如果一个邮件的分数是0.9,意味着你的算法认为这封邮件有90%的可能性是垃圾邮件。

邮件分类:

  • 正类(+):垃圾邮件
  • 负类(-):非垃圾邮件

分数解释:

  • 如果分数高(比如接近1),则认为邮件更可能是垃圾邮件。
  • 如果分数低(比如接近0),则认为邮件更可能是正常邮件。

阈值的应用:

为了决定哪些邮件应该被标记为垃圾邮件,你需要选择一个阈值。这个阈值决定了算法何时将一封邮件标记为垃圾邮件。

示例:
  • 假设你选择的阈值是0.5。
  • 所有分数大于或等于0.5的邮件都会被标记为垃圾邮件(正类)。
  • 所有分数小于0.5的邮件都会被视为正常邮件(负类)。

在传统的机器学习任务中,我们通常关注的是准确率,即模型正确分类的比例。但在某些情况下,错误分类的成本是不一样的,这就引入了代价敏感错误率的概念。代价敏感错误率考虑了不同类型的错误带来的不同损失或成本。

代价敏感错误率的计算:

  • 假定代价:我们可以为两种类型的错误指定不同的代价。例如,我们可以说假正例(FP)的代价是假负例(FN)的两倍,因为违约风险通常比失去一个好客户更高。

  • 代价曲线显示了在不同阈值下,代价敏感错误率的变化情况。这条曲线帮助我们理解,在不同的决策阈值下,不同类型的错误带来的总代价是如何变化的。

假设检验的基本概念:

假设检验是用来判断一个假设是否合理的一种统计方法。在机器学习中,我们经常需要基于数据来验证某些假设是否成立。

例子说明:

想象一下,你是一家公司的数据分析师,你们最近推出了一款新产品,并想知道这款产品是否比旧版产品更受欢迎。为了验证这一点,你可以收集新旧产品的销售数据来进行分析。

步骤:
  1. 提出假设

    • 零假设(H0):新产品和旧产品一样受欢迎。
    • 备择假设(H1):新产品比旧产品更受欢迎。
  2. 收集数据:假设你收集了过去一个月内新旧产品的销售数据。

  3. 选择统计量:选择一个统计量来衡量产品的受欢迎程度。例如,可以使用平均销售额作为统计量。

  4. 计算统计量:根据收集的数据计算统计量的值。例如,计算新旧产品的平均销售额。

  5. 确定显著性水平:选择一个显著性水平(通常为 0.05 或 0.01),这表示我们愿意接受错误拒绝零假设的风险比例。(显著性水平是我们在假设检验过程中愿意承担的风险水平,即错误地拒绝零假设的概率。换句话说,它是我们在没有任何证据的情况下仍然拒绝零假设的概率上限。

  6. 计算p值:p值是假设检验中的一项重要指标,它表示在零假设为真的情况下,观察到当前统计量值或更极端值的概率。

  7. 做出结论

    • 如果 p 值小于显著性水平(如 0.05),则拒绝零假设,接受备择假设。这意味着我们有足够的证据支持新产品比旧产品更受欢迎。
    • 如果 p 值大于显著性水平,则无法拒绝零假设。这意味着没有足够的证据证明新产品比旧产品更受欢迎。

二项检验(Binomial Test)

用途:

二项检验用于检验二分类数据的分布是否符合预期的比率。它常用于检验一个样本是否来自具有特定比例的总体。

t 检验(t-Test)

用途:

t 检验用于检验两个样本均值是否有显著差异。它适用于比较两组连续型数据的平均值。

例子说明:

假设你是一名营养师,想要测试两种不同的减肥计划的效果。你随机选择了 20 名参与者,其中 10 人参加计划 A,另外 10 人参加计划 B。经过一个月后,你记录了每位参与者的体重减轻情况。

步骤:
  1. 提出假设

    • 零假设(H0):计划 A 和计划 B 的效果相同。
    • 备择假设(H1):计划 A 和计划 B 的效果不同。
  2. 计算 t 统计量:使用样本数据计算 t 统计量,这是一个度量两个样本均值差异的标准化值。

  3. 确定自由度:自由度取决于样本大小,对于独立样本 t 检验,自由度为 n1+n2−2n1​+n2​−2。

  4. 查找临界值:根据自由度和显著性水平(例如 0.05),查找 t 分布表中的临界值。

  5. 比较 t 统计量与临界值

    • 如果 t 统计量的绝对值大于临界值,则拒绝零假设,认为两个计划的效果不同。
    • 如果 t 统计量的绝对值小于临界值,则无法拒绝零假设,认为两个计划的效果相似。
  6. 另一种方法:计算 p 值,如果 p 值小于显著性水平,则拒绝零假设。

总结:

  • 二项检验:用于检验二分类数据是否符合预期的比例。
  • t 检验:用于检验两组连续型数据的平均值是否有显著差异。

McNemar 检验是一种用于比较两个相关样本(通常是配对样本)在二分类问题中分类结果差异的统计检验方法。它常用于机器学习和医学研究中,特别是在评估不同分类器或不同模型设置下的性能差异时。

例子说明:

假设你是一名数据科学家,想要比较两种不同的机器学习模型(模型 A 和模型 B)对同一组数据集的分类效果。你首先训练这两个模型,然后使用相同的测试集来评估它们的性能。

步骤:
  1. 收集数据:收集两个模型对同一测试集的分类结果。例如,模型 A 和模型 B 对 100 个样本的分类结果。

  2. 构建混淆矩阵:构建一个 2x2 的混淆矩阵来展示两个模型分类结果的匹配情况。混淆矩阵包含四个单元格:

    • 单元格 a:模型 A 和模型 B 都正确分类的样本数量。
    • 单元格 b:模型 A 错误分类但模型 B 正确分类的样本数量。
    • 单元格 c:模型 B 错误分类但模型 A 正确分类的样本数量。
    • 单元格 d:模型 A 和模型 B 都错误分类的样本数量。

4.确定自由度:McNemar 检验的自由度为 1。

5.查找临界值:根据自由度和显著性水平(例如 0.05),查找 χ² 分布表中的临界值。

6.做出结论

  • 如果计算出的 χ2χ2 大于临界值,则拒绝零假设,认为两个模型的分类结果有显著差异。
  • 如果计算出的 χ2χ2 小于临界值,则无法拒绝零假设,认为两个模型的分类结果没有显著差异。
  • Friedman 检验:用于判断多个模型在同一组数据集上的性能是否存在显著差异。
  • Nemenyi 后续检验:用于确定 Friedman 检验中哪一对模型的性能存在显著差异。

​​​​

偏差(Bias)

定义:

偏差是指模型预测值与真实值之间的系统性差异。如果一个模型的偏差很高,这意味着模型的预测值系统性地偏离了真实值,也就是说模型不够准确

例子说明:

假设你正在训练一个模型来预测房价。如果模型总是低估房价,那么这个模型就表现出高偏差。这意味着模型在训练数据上的表现不佳,无法很好地捕捉到数据中的模式。

方差(Variance)

定义:

方差是指模型预测值随着训练数据的变化而变化的程度。如果一个模型的方差很高,这意味着模型对训练数据的微小变化非常敏感,即模型不稳定

例子说明:

继续使用房价预测的例子。如果模型在不同的训练集上给出非常不同的预测结果,那么这个模型就表现出高方差。这意味着模型过度依赖于训练数据的具体细节,而不是泛化的特征。

在机器学习中,偏差和方差之间存在一种权衡关系,称为偏差-方差权衡。一个模型很难同时拥有低偏差和低方差。通常,当我们试图降低偏差时,方差往往会增加;反之亦然。

例子说明

假设你正在训练一个线性回归模型来预测房价。

  • 高偏差:如果你使用一个非常简单的线性模型(比如只考虑房子的面积),模型可能无法很好地拟合数据中的复杂关系,预测结果会系统性地偏离真实值。
  • 高方差:如果你使用一个非常复杂的模型(比如多项式回归),模型可能会非常精确地拟合训练数据中的每一个细节,但在新的数据上表现不稳定。
  • 减少偏差

    • 使用更复杂的模型。
    • 收集更多数据。
    • 添加更多特征。
  • 减少方差

    • 使用更简单的模型。
    • 使用正则化技术。
    • 减少特征数量。
    • 增加数据集的多样性

泛化误差是机器学习中一个非常重要的概念,它衡量了模型在未见过的新数据上的预测能力。简单来说,泛化误差就是模型在未知数据上的预测错误率。

  • 17
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值