动态规划14:一和零

文章讲述了如何使用动态规划解决一个二维01背包问题,即在给定二进制字符串数组中找到包含最多m个0和n个1的最长子集。作者通过实例和解题思路分析了问题本质与递推公式,最后给出了Java代码实现和时间复杂度分析。
摘要由CSDN通过智能技术生成

动态规划14:一和零

在这里插入图片描述

题目

474. 一和零

给你一个二进制字符串数组 strs 和两个整数 mn

请你找出并返回 strs 的最大子集的长度,该子集中 最多m0n1

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y子集

示例 1:

输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

输入:strs = ["10", "0", "1"], m = 1, n = 1
输出:2
解释:最大的子集是 {"0", "1"} ,所以答案是 2 。

提示:

  • 1 <= strs.length <= 600
  • 1 <= strs[i].length <= 100
  • strs[i] 仅由 '0''1' 组成
  • 1 <= m, n <= 100

解题思路-五部曲

首先我们先把题型给确定了,这不是多重背包,实质还是01背包

多重背包是每个物品,数量不同的情况。

本题中strs 数组里的元素就是物品,每个物品都是一个!

而m 和 n相当于是一个背包,两个维度的背包

理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。

但本题其实是01背包问题!

只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

  1. 确定dp数组含义:dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]

  2. 确定递推公式:dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

    dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

    dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

    然后我们在遍历的过程中,取dp[i][j]的最大值。

    所以递推公式:dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

    此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

    这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

  3. dp数组初始化:因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

  4. 确定遍历顺序:先物后包,包要倒序,两种维度的顺序不用在意

  5. debug:打印dp数组

代码示例

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int[][] dp = new int[m + 1][n + 1];
        dp[0][0] = 0;//通过给的答案,是不考虑空集的
        for(String str : strs) {
            char[] cArr = str.toCharArray();
            int m0 = 0;//本字符串的0的数量
            int n1 = 0;//本字符串的1的数量
            for(char c : cArr) {
                if(c == '0') m0++;
                else n1++;
            }
            
            for(int i = m; i >= m0; i--) {
                for(int j = n; j >= n1; j--) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - m0][j - n1] + 1);
                }
            }
        }
        return dp[m][n];
    }
}
  • 时间复杂度: O(kmn),k 为strs的长度
  • 空间复杂度: O(mn)

总结

不少同学刷过这道题,可能没有总结这究竟是什么背包。

此时我们讲解了0-1背包的多种应用,

这些都是 0-1背包不同维度上的应用,大家可以细心体会!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曦煜墨白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值