动态规划14:一和零
题目
给你一个二进制字符串数组 strs
和两个整数 m
和 n
。
请你找出并返回 strs
的最大子集的长度,该子集中 最多 有 m
个 0
和 n
个 1
。
如果 x
的所有元素也是 y
的元素,集合 x
是集合 y
的 子集 。
示例 1:
输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
示例 2:
输入:strs = ["10", "0", "1"], m = 1, n = 1
输出:2
解释:最大的子集是 {"0", "1"} ,所以答案是 2 。
提示:
1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i]
仅由'0'
和'1'
组成1 <= m, n <= 100
解题思路-五部曲
首先我们先把题型给确定了,这不是多重背包,实质还是01背包
多重背包是每个物品,数量不同的情况。
本题中strs 数组里的元素就是物品,每个物品都是一个!
而m 和 n相当于是一个背包,两个维度的背包。
理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。
但本题其实是01背包问题!
只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。
-
确定dp数组含义:dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。
-
确定递推公式:dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。
dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。
然后我们在遍历的过程中,取dp[i][j]的最大值。
所以递推公式:dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。
这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。
-
dp数组初始化:因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。
-
确定遍历顺序:先物后包,包要倒序,两种维度的顺序不用在意
-
debug:打印dp数组
代码示例
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
int[][] dp = new int[m + 1][n + 1];
dp[0][0] = 0;//通过给的答案,是不考虑空集的
for(String str : strs) {
char[] cArr = str.toCharArray();
int m0 = 0;//本字符串的0的数量
int n1 = 0;//本字符串的1的数量
for(char c : cArr) {
if(c == '0') m0++;
else n1++;
}
for(int i = m; i >= m0; i--) {
for(int j = n; j >= n1; j--) {
dp[i][j] = Math.max(dp[i][j], dp[i - m0][j - n1] + 1);
}
}
}
return dp[m][n];
}
}
- 时间复杂度: O(kmn),k 为strs的长度
- 空间复杂度: O(mn)
总结
不少同学刷过这道题,可能没有总结这究竟是什么背包。
此时我们讲解了0-1背包的多种应用,
- 纯 0 - 1 背包是求 给定背包容量 装满背包 的最大价值是多少。
- 416. 分割等和子集 是求 给定背包容量,能不能装满这个背包。
- 1049. 最后一块石头的重量 II 是求 给定背包容量,尽可能装,最多能装多少
- 494. 目标和是求 给定背包容量,装满背包有多少种方法。
- 本题是求 给定背包容量,装满背包最多有多少个物品。
这些都是 0-1背包不同维度上的应用,大家可以细心体会!