缓存雪崩及解决方案 -- 添加随机TTL值

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

相比较来看,显然Redis宕机带来的影响更大

解决方案:

  • 给不同的Key的TTL添加随机值
  • 利用Redis集群提高服务的可用性
  • 给缓存业务添加降级限流策略
  • 给业务添加多级缓存(例如在反向代理服务器nginx再添加一层缓存、在jvm内部添加一层缓存等)

反向代理服务器nginx添加一层缓存,nginx缓存未命中在查询redis,redis未命中到达jvm,在jvm内部添加一层缓存,最后才会查询数据库

案例

在单机的系统中,通常使用给不同的Key的TTL添加随机值的方案来解决缓存雪崩的问题

public Shop queryWithPassThrough(Long id) {
    String key = "cache:shop:" + id;
    // 1. 从redis查询商铺缓存
    String shopJson = stringRedisTemplate.opsForValue().get(key);
    // 2. 判断是否存在
    if (StrUtil.isNotBlank(shopJson)) {
        // 3. 存在,转成Java对象,直接返回
        return JSONUtil.toBean(shopJson, Shop.class);
    }
    // 处理缓存穿透(空值占位)
    if (shopJson != null) {
        return null;
    }
    // 4. 不存在,根据id查询数据库
    Shop shop = getById(id);
    // 5. 不存在,返回错误
    if (shop == null) {
        // 写入空值并设置随机TTL(避免缓存穿透)
        stringRedisTemplate.opsForValue().set(
            key,
            "",
            generateRandomTTL(60, 120), // 随机60~120秒
            TimeUnit.SECONDS
        );
        return null;
    }
    // 6. 存在,写入redis并设置随机TTL
    stringRedisTemplate.opsForValue().set(
        key,
        JSONUtil.toJsonStr(shop),
        generateRandomTTL(1800, 600), // 随机25~35分钟(基础30分钟±5分钟)
        TimeUnit.SECONDS
    );
    // 7. 返回
    return shop;
}

// 生成随机TTL的方法(基础值±偏移量)
private long generateRandomTTL(int baseSeconds, int offsetSeconds) {
    // 使用ThreadLocalRandom生成安全的随机数
    long randomOffset = ThreadLocalRandom.current().nextLong(-offsetSeconds, offsetSeconds + 1);
    // 确保TTL不小于最小值(如10秒)
    return Math.max(10, baseSeconds + randomOffset);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值