(本科·复变函数论·含例题详解)解析函数的幂级数表示法

一、复级数的基本性质

1. 复数列的极限

        复数中也有级数收敛相关的定义,和分析学中类似。

        一复数列\{\alpha_n\}\alpha_n=a_n+ib_n,若\forall \varepsilon > 0 , \exists N > 0n>N时,恒有

|\alpha_n-\alpha|<\varepsilon

        则称复数列\{\alpha_n\}收敛于\alpha。记作

\lim _ { n \rightarrow \infty } \alpha _ { n } = a

        不收敛的复数列成为发散数列。

        定理:\lim _ { n \rightarrow \infty } \alpha _ { n } = \alpha \Leftrightarrow \lim _ { n \rightarrow \infty } a _ { n } = a , \lim _ { n \rightarrow \infty } b _ { n } = b

        该定理说明可将复数列的敛散性转化为判别两个实数列的敛散性问题。甚至可以证明两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差、积、商。

2. 复数项级数

        设复数列\{\alpha_n\}=a_n+ib_n\sum^\infty_{n=1}=\alpha_1+\alpha_2+...+\alpha_n为无穷级数,\sum^\infty_{n=1}\alpha_n为级数前n项和。

        与实数项级数相同,判别复数项级数敛散性的基本方法是利用极限(部分和)

lim_{n\rightarrow \infty}S_n=s

        但实际上,这种判别方式很困难,我们仍然将复数敛散性转换到实数上去判断,有如下定理。

        定理:级数\sum^\infty_{n=1}\alpha_n收敛\Leftrightarrow\sum^\infty_{n=1}a_n\sum^\infty_{n=1}b_n都收敛。

        注意,\sum^\infty_{n=1}a_n\sum^\infty_{n=1}b_n有一个发散都能说明\sum^\infty_{n=1}\alpha_n是发散的。

        对于一复数项级数,可以初步用必要条件判断一下是否收敛:级数\sum^\infty_{n=1}\alpha_n收敛的必要条件是\lim _ { n \rightarrow \infty } \alpha _ { n } = 0

        定理:如果级数\sum^\infty_{n=1}|\alpha_n|收敛,则级数\sum^\infty_{n=1}\alpha_n也收敛。这也等价于\sum^\infty_{n=1}|a_n|\sum^\infty_{n=1}|b_n|都收敛。此时\sum^\infty_{n=1}\alpha_n为绝对收敛;若\sum^\infty_{n=1}|\alpha_n|发散,而\sum^\infty_{n=1}\alpha_n收敛,则称为条件收敛。

3. 函数项级数

        同复数列一样有各种基本概念,这里额外介绍一下一致收敛:对于级数

\sum^\infty_{n=1}f_n(z)=f_1(z)+f_2(z)+...f_n(z)+...

        如果在D上有一个函数s(z),使得对任意给定的\varepsilon >0,存在正整数N=N(\varepsilon ),当n>N,对一切的z\in D均有

|s(z)-s_n(z)|<\varepsilon

        则称级数\sum^\infty_{n=1}f_n(z)=f_1(z)+f_2(z)+...f_n(z)+...在D上一致收敛于s(z)

        定理(一致收敛的柯西准则):函数项级数\sum f_n(z)在D上一致收敛的充要条件是任给的\varepsilon >0,存在只与\varepsilon有关的正整数N=N(\varepsilon ),使得当n>N时,对任意p和任意z \in D,有

|f_{n+1}(z)+f_{n+2}(z)+...+f_{n+p}(z)|<\varepsilon

        定义(优级数):设a_1+a_2+...+a_n+...是一个收敛的正项级数且在D上,若

|f_n(z)|<a_n(n=1,2,...)

        则级数\sum f_n(z)在D上一致收敛。

        在实分析中的内闭一致收敛、魏尔斯特拉斯定理等在复级数都有相应的体现。

二、幂级数

1. Able定理

        定义(幂级数):形如

\sum _ { n = 0 } ^ { \infty } c _ { n } ( z - a ) ^ { n } = c _ { 0 } + c _ { 1 } ( z - a ) + c _ { 2 } ( z - a ) ^ { 2 } + \cdots

        的复函数项级数称为幂级数,其中c_na都是复常数。

        定理(Able):如果级数\sum c_nz^nz=z_0(z_0\neq 0)收敛,则对满足|z|<|z_0|的一切z,级数绝对收敛。反之则发散。

        例:若幂级数\sum^{\infty}_{n=0} c_n(z-2)^nz_0=0处收敛,那么在z_0=3处是否还收敛?

        解:t=z-2,则得\sum^{\infty}_{n=0} c_nt^n在点z_0=0处,即t_0=z_0-2=-2处收敛。根据Able定理,\sum^{\infty}_{n=0} c_nt^n在点z=3,即t=z-2=1处满足

|t|=1<|t_0|=2

        故原幂级数\sum^{\infty}_{n=0} c_n(z-2)^nz_0=3处收敛。

2. 幂级数的收敛圆与收敛半径

        幂级数\sum^{\infty}_{n=0} c_n(z-a)^n的收敛范围是以a点为中心的圆域。

        定理:幂级数\sum^{\infty}_{n=0} c_nz^n\sum^{\infty}_{n=0} |c_n||z|^n有相同的收敛半径。

        既然如此,给出如下方法求幂级数的收敛半径,实战中看哪个好用用哪个。

        1. 比值法:lim_{n\rightarrow \infty}|\frac{c_{n+1}}{c_n}|=l

        2. 根值法:lim_{n\rightarrow \infty}\sqrt[n]{|c_n|}=l

R=\left\{\begin{matrix} \frac{1}{l}(l\neq 0,l\neq +\infty)\\ 0(l=+\infty)\\ \infty(l=0) \end{matrix}\right.

        例:求幂级数\sum^{\infty}_{n=0} z^n=1+z+z^2+...+z^n+...的收敛范围及和函数。

        解:lim_{n\rightarrow \infty}|\frac{c_{n+1}}{c_n}|=1,所以收敛半径R=1

        和函数S _ { n } = 1 + z + z ^ { 2 } + \cdots + z ^ { n - 1 } = \frac { 1 - z ^ { n } } { 1 - z }(z\neq 1)

        当|z|<1时,lim_{n\rightarrow \infty}z^n=0,因此\lim _ { n \rightarrow \infty } S _ { n } = \frac { 1 } { 1 - z }

        当|z|=1时,lim_{n\rightarrow \infty}z^n\neq 0,因此和函数发散。

        综上,\sum^{\infty}_{n=0} z^n的收敛范围是|z|<1,此时和函数为S _ { n } = \frac { 1 } { 1 - z }

3. 幂级数的性质

        定理:

        (1)幂级数的和函数f(z)=\sum_{n=0}^\infty c_n(z-z_0)^n在其收敛圆内是一个解析函数;

        (2)幂级数的和函数f(z)=\sum_{n=0}^\infty c_n(z-z_0)^n在其收敛圆内可以逐项求导和逐项积分:

        对于逐项求导:

f ^ { \prime } ( z ) = \left[ \sum _ { n = 0 } ^ { \infty } c _ { n } ( z - z _ { 0 } ) ^ { n } \right] ^ { \prime } = \sum _ { n = 0 } ^ { \infty } \left[ c _ { n } ( z - z _ { 0 } ) ^ { n } \right] ^ { \prime }

= \sum _ { n = 1 } ^ { \infty } n c _ { n } ( z - z _ { 0 } ) ^ { n - 1 }

        对于逐项积分:

        \int _ { c } f ( z ) d z = \int _ { c } \sum _ { n = 0 } ^ { \infty } c _ { n } ( z - z _ { 0 } ) ^ { n } d z = \sum _ { n = 0 } ^ { \infty } c _ { n } \int _ { c } ( z - z _ { 0 } ) ^ { n } d z

        或表示为

\int _ { z _ { 0 } } ^ { z } f ( \xi ) d \xi = \sum _ { n = 0 } ^ { \infty } \frac { c _ { n } ( z - z _ { 0 } ) ^ { n + 1 } } { n + 1 }

4. 幂级数的运算

        加减运算就跳过吧太简单了,主要说说乘法。

        ( \sum _ { n = 0 } ^ { \infty } a _ { n } z ^ { n } ) \cdot ( \sum _ { n = 0 } ^ { \infty } b _ { n } z ^ { n } ) = a _ { 0 } b _ { 0 } + ( a _ { 0 } b _ { 1 } + a _ { 1 } b _ { 0 } ) z

+ ( a _ { 0 } b _ { 2 } + a _ { 1 } b _ { 1 } + a _ { 2 } b _ { 0 } ) z ^ { 2 } + ( a _ { 0 } b _ { 3 } + a _ { 1 } b _ { 2 } + a _ { 2 } b _ { 1 } + a _ { 3 } b _ { 0 } ) z ^ { 3 } + \cdots

= \sum _ { n = 0 } ^ { \infty } ( a _ { 0 } b _ { n } + a _ { 1 } b _ { n - 1 } + a _ { 2 } b _ { n - 2 } + \cdots + a _ { n } b _ { 0 } ) z ^ { n }

= f ( z ) g ( z ) , | z | < R

        其中R=min(r_1,r_2)。仔细观察一下上式有个规律,就是z的次数和它的每一项系数下标之和是一样的。这其实是对角线法则。值得注意的是,上面的运算在两个级数中的较小的收敛圆内成立,但这并不意味着运算后级数的收敛半径就是上面两个级数中的较小一个收敛半径。

        例:\frac{1}{z-b}表示成形如\sum _ { n = 0 } ^ { \infty } c _ { n } ( z - a ) ^ { n }的幂级数,a \neq b

        解:注意到

\frac { 1 } { z - b } = \frac { 1 } { ( z - a ) - ( b - a ) }

        因此有

\frac { 1 } { z - b } = - \frac { 1 } { b - a } \frac { 1 } { 1 - \frac { z - a } { b - a } } = \frac { 1 } { 1 - g ( z ) } ( - \frac { 1 } { b - a } )

\frac { 1 } { 1 - g ( z ) } = 1 + g ( z ) + | g ( z ) | ^ { 2 } + \cdots + | g ( z ) | ^ { n } + \cdots , ( | g ( z ) | < 1 )= 1 + \frac { z - a } { b - a } + \left[ \frac { z - a } { b - a } \right] ^ { 2 } + \cdots + \left[ \frac { z - a } { b - a } \right] ^ { n } + \cdots , | z - a | < | b - a | = R

        从而有

\frac { 1 } { z - b } = - \frac { 1 } { b - a } \frac { 1 } { 1 - g ( z ) } = - \frac { 1 } { b - a } - \frac { 1 } { ( b - a ) ^ { 2 } } ( z - a )

- \frac { 1 } { ( b - a ) ^ { 3 } } ( z - a ) ^ { 2 } - \cdots \frac { 1 } { ( b - a ) ^ { n + 1 } } ( z - a ) ^ { n } - \cdots

三、泰勒展式

        在实函数范围内,泰勒展开需要满足的关键条件是在展开点处任意阶导数都要存在,对于复变函数来说,由于解析函数必定有任意阶导数,所以这一条是必然满足的。

1. 泰勒展开定理

        设f(z)在区域D内解析,z_0 \in D,R为z_0到D的边界上各点的最短距离,则当|z-z_0|<R时,

f(z)=\sum_{n=0}^\infty c_n(z-z_0)^n        

        其中,c _ { n } = \frac { 1 } { n ! } f ^ { ( n ) } ( z _ { 0 } ) , n = 0 , 1 , 2 , \cdots,即

f ( z ) = f ( z _ { 0 } ) + f ^ { \prime } ( z _ { 0 } ) ( z - z _ { 0 } ) + \frac { f ^ { \prime \prime } ( z _ { 0 } ) } { 2 ! } ( z - z _ { 0 } ) ^ { 2 } + \cdots + \frac { f ^ { ( n ) } ( z _ { 0 } ) } { n ! } ( z - z _ { 0 } ) ^ { n } + \cdots

        说明:此级数收敛范围是以z_0为中心,r为半径的圆域,|\xi-z_0|<r,圆k的半径r是可以任意增大的,只要圆k及其内部包含在D范围内即可。因此f(z)在解析点z_0处的Taylor级数的收敛半径至少等于z_0到D的边界上各点的最短距离,也就是R。如果在D中存在奇点,那么收敛半径就等于z_0到这个奇点的距离。

        注:f(z)z_0的Taylor展开式是唯一的!

        

        以后再说解析函数的等假命题,不要只能想到满足C-R方程啦,f(z)z_0的某一领域内可展开成幂级数也意味着f(z)解析!

2. 几个重要的初等函数泰勒展开公式

e ^ { z } = 1 + z + \frac { z ^ { 2 } } { 2 ! } + \frac { z ^ { 3 } } { 3 ! } + \cdots + \frac { z ^ { n } } { n ! } + \cdots = \sum _ { n = 0 } ^ { \infty } \frac { 1 } { n ! } z ^ { n }\sin z = \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } z ^ { 2 n + 1 } } { ( 2 n + 1 ) ! }= z - \frac { z ^ { 3 } } { 3 ! } + \frac { z ^ { 5 } } { 5 ! } - \frac { z ^ { 7 } } { 7 ! } + \cdots

cosz=(sinz)' = 1 - \frac { z ^ { 2 } } { 2 ! } + \frac { z ^ { 4 } } { 4 ! } - \cdots + ( - 1 ) ^ { n } \frac { z ^ { 2 n } } { ( 2 n ) ! } + \cdots

        上述函数在全平面解析,因此收敛半径R=+\infty

        对于ln(z+1)在原点处的泰勒展开,距离原点最近的奇点是-1,因此收敛范围是|z|<1

\ln ( 1 + z ) = z - \frac { z ^ { 2 } } { 2 } + \frac { 1 } { 3 } z ^ { 3 } - \cdots + ( - 1 ) ^ { n } \frac { z ^ { n + 1 } } { n + 1 } + \cdots,|z|<1

        同理,对于\frac{1}{1-z}\frac{1}{1+z},还有(1+z)^\alpha,它们的收敛范围也是|z|<1

\frac { 1 } { 1 - z } = 1 + z + z ^ { 2 } + \cdots + z ^ { n } + \cdots , | z | < 1

\frac { 1 } { 1 + z } = 1 - z + \cdots + ( - 1 ) ^ { n } z ^ { n } + \cdots , | z | < 1

( 1 + z ) ^ { \alpha } = 1 + \alpha z + \frac { \alpha ( \alpha - 1 ) } { 2 ! } z ^ { 2 } + \cdots + \frac { \alpha ( \alpha - 1 ) \cdots ( \alpha - n + 1 ) } { n ! } z ^ { n } + \cdots , | z | < 1

        例:f ( z ) = \frac { 1 } { 3 - 2 z }展开成(z+1)的幂级数(其实就是在z=-1处展开)。

        解:先变形(变到公式形式,然后套公式即可)

        \frac { 1 } { 3 - 2 z } = \frac { 1 } { 5 - 2 ( z + 1 ) } = \frac { 1 } { 5 } \cdot \frac { 1 } { 1 - \frac { 2 } { 5 } ( z + 1 ) }

        后套公式略。

3. 零点的孤立性和唯一性

        若f^n(z_0)=0(n=0,1, \cdots, m-1),但f^m(z_0)\neq 0,则称z_0f(z)的m级零点。当m=1时,也称为单零点。

        对于m级零点,有如下定理,

        定理:f(z)z_0为m级零点的充要条件是在z_0的某邻域内,f(z)可以表示为如下形式

f ( z ) = ( z - z _ { 0 } ) ^ { m } \varphi ( z )

        其中m为正整数,\varphi ( z )z_0处解析,\varphi ( z_0 ) \neq 0

        零点是具有孤立性的,在|z-a|<R内解析的函数f(z)不恒为0,a为其零点,则必有a的一个领域,使得f(z)在其中无异于a的零点。即a是解析函数f(z)的孤立零点。

        定理(解析函数唯一性):设

        (1)函数f_1(z)f_2(z)在区域D内解析;

        (2)D内有一个收敛于a\in D的点列\{z_n\}(z_n \neq a),满足

f_1(z_n)=f_2(z_n)(n=1,2,\cdots)

        则在D内有f_1(z)\equiv f_2(z)

        相关推论:

        (1)设在区域D内解析的函数f_1(z)f_2(z)在D内的某一子区域相等,则它们在D上恒等;

        (2)一切在实轴上成立的恒等式,z平面上也成立,只要这个恒等式的两边在z平面上都是解析的。

        例:是否存在着原点解析的函数f(z),满足下列条件:f(\frac{1}{2n-1})=0 ,f(\frac{1}{2n})=\frac{1}{2n}

        解:由于\{ \frac{1}{2n-1}\}\{ \frac{1}{2n}\}都以0为聚点,由解析函数的唯一性定理,f(z)=z是在原点解析,并满足f(\frac{1}{2n})=\frac{1}{2n}的唯一函数;但此函数不满足f(\frac{1}{2n-1})=0,根据解析函数唯一性,并不存在这样的原点解析函数f(z)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值