一、插入数据优化
1、insert优化
1.1、插入多条数据时,不要一条数据一个SQL语句,使用批量插入,一条一条插入每次都要与数据库建立连接。每次批量插入数据量也不建议太大(500-1000)。
1.2、手动提交事务
MySQL中事务是自动提交的,每次插入操作都需要自动提交事务,这样就会导致频繁的事物开启和提交。建议手动控制在执行insert语句之前开启事物,在执行多条insert之后,统一提交事务。
1.3、主键顺序插入
在InnoDB中,表数据都是根据主键顺序组织存放
乱序插入会导致叶分裂现象
什么是叶分裂?
当插入一条数据主键的值所对应的页(page1)已经放不下,这时就会发生也分裂现象。会先创建一个新的页(page3),然后将超过50%的数据移动到新的页(page3)。然后该条数据插入到新数据页(page3),再对链表指针进行重新设置。将(page1)的下一个指向page3,page3的上一个指向page1,将page3的下一个指向page1之前的下一页。
什么是页合并?
在InnoDB中要删除一行数据,实际上记录的这条数据并没有被删除,只是被标记被删除了,这块空间就可以被其他记录声明使用。当一个页中数据删除的记录达到MERGE_THRESHOLD
(默认为是页的百分之50),InnoDB会去查看上一页或者下一页是否有合并的可能性。
之前页
2、大数据插入优化
如果一次性插入大批量的数据,使用insert语句效率较低,可以使用load指令进行插入,可以将本地磁盘文件的数据直接加载到数据库中
二、order by 优化
1、Using filesort :通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort排序。
2、Using index :通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高。
创建联合索引时不指定排序,查询时要么全部使用降序,要么全部使用升序,否则会出现Using filesort,如果order by 排序方式不同,可以重新创建一个联合索引并指定他们的排序方式。多字段排序时,也遵循最左匹配法则。
三、group by 优化
在分组操作是可以创建联合索引提高效率。
在分组操作时,索引的使用也是满足最左匹配法则的
四、limit优化
limit在查询大数据量分页性能下降,原因在于MySQL需要根据偏移量扫描出所有符合的数据,然后再从中取分页记录数返回,其余数据全部丢弃。如 select * from t limit 100000, 10; MySQL需要扫描 100010 行数据并返回最后的10条。
可以用过覆盖索引加子查询的方式来优化:
select s.* from student s ,(select id from student order by id limit 1000000,10) a
where s.id = a.id;
五、count优化
在MyISAM中记录了这个表的总行数,执行count(*)就会返回这个值
在InnoDB中没有这个设计,执行计数时会将数据一行一行读出来累计计数。优化思路就是自己计数(可以在redis中计数,添加一条数据redis计数加一,删除一条数据则减一)
六、update优化
在InnoDB中支持行锁,我们在执行update语句的时候一定要使用索引更新,并且索引不能失效,否则行锁就会升级为表锁,锁表并发性能就会降低